
Integrated Project

Priority 2.4.7

Semantic based knowledge systems

KDE Community Involvement
Deliverable D7.2

Version 1.1

08.01.2007

Dissemination level: PU

Nature Other

Due date 31.12.2006

Lead contractor EDGE-IT S.A.R.L

Start date of project 01.01.2006

Duration 36 months

Nepomuk 08.01.2007

Authors

Sebastian Trüg, EDGE-IT S.A.R.L
Stéphane Laurière, EDGE-IT S.A.R.L
David Barth, EDGE-IT S.A.R.L

Mentors

Malte Kiesel, DFKI

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Erwin-Schroedinger-Strasse (Building 57)
D 67663 Kaiserslautern
Germany
Email: bernardi@dfki.uni-kl.de, phone: +49 631 205 3582, fax: +49 631 205 4910

Partners

DEUTSCHES FORSCHUNGSZENTRUM F. KUENSTLICHE INTELLIGENZ GMBH
IBM IRELAND PRODUCT DISTRIBUTION LIMITED
SAP AG
HEWLETT PACKARD GALWAY LTD
THALES S.A.
PRC GROUP - THE MANAGEMENT HOUSE S.A.
EDGE-IT S.A.R.L
COGNIUM SYSTEMS S.A.
NATIONAL UNIVERSITY OF IRELAND, GALWAY
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE
UNIVERSITAET HANNOVER
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS
KUNGLIGA TEKNISKA HOEGSKOLAN
UNIVERSITA DELLA SVIZZERA ITALIANA
IRION MANAGEMENT CONSULTING GMBH

Copyright: Nepomuk Consortium 2006
Copyright on template: Irion Management Consulting GmbH 2006

Deliverable D7.2 Version 1.1 ii

Nepomuk 08.01.2007

Versions

Version Date Reason

0.1 04.12.2006 First draft by Sebastian Trüg

0.2 22.12.2006 Second version presented to mentors

0.3 27.12.2006 Considered comments from mentors

1.0 29.12.2006 Final version

1.1 08.01.2006 Some streamlining by M. Junker and submission

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for Nepomuk partners

Deliverable D7.2 Version 1.1 iii

Nepomuk 08.01.2007

Executive summary

To be really successful, the Nepomuk project needs not only to realize and
deploy an innovative approach for collaborative knowledge work, but also to
integrate the Nepomuk framework into mainstream desktop environments and
development platforms. Community work is hence a very important part of
the project. Already in early stages of the project open-source communities
have to be involved in the development process to make them aware of the
progress in Nepomuk.
Nepomuk-KDE is a sub-project of Nepomuk which aims to provide a full imple-
mentation of the standards and APIs defined in Nepomuk on the KDE Desktop
by introducing the technologies to the KDE community and helping with an
integration as a central KDE technology.
KDE is a powerful Free Software graphical desktop environment for Linux and
Unix workstations. It consists of an elaborate development framework, a
large collection of desktop applications including a complete office suite and
all-day-tools like an email client and a powerful internet browser. KDE is the
leading desktop environment on Unix derivates. The semantic features found
in KDE are however minimalistic if existant at all. Nepomuk-KDE sets out to
change this.
Steps have been undertaken to get the KDE community involved in Nepomuk.
The Nepomuk-KDE project was presented at the annual KDE developer confer-
ence aKademy 2006 in Dublin. A wiki has been created to present the goals
and progress of the project, and also to raise interest across the community.
Many discussions have been initiated within the KDE community.
As a first result of the Nepomuk-KDE project, the Nepomuk-KDE middleware
and the core services providing important features like RDF storage have been
implemented. They integrate well with the existing KDE framework. Two sim-
ple annotation and tagging applications have been developed to present the
capabilities of the Nepomuk-KDE framework. An existing desktop search tool
has been enhanced to also search for metadata created via the Nepomuk-KDE
tools.
The Nepomuk-KDE project is already a success: a working implementation of
the Nepomuk middleware including the core services has been realized and
made public to the KDE community, and the Nepomuk-KDE components are
scheduled to be included into the kdelibs, which is the core of KDE which each
KDE component is based upon. This will drastically improve the awareness of
Nepomuk-KDE and Nepomuk in general. Hopefully it will also bring new devel-
opers to the effort and help speeding up the realization of a social semantic
KDE desktop.

Deliverable D7.2 Version 1.1 iv

Nepomuk 08.01.2007

Table of contents

1 Introduction . 1
2 KDE State Of The Art . 3

2.1 A Little KDE History . 3
2.2 KDE - Personal Information Management 4

2.2.1 Kontact. 4
2.2.2 Kopete . 5
2.2.3 Basket - Advanced Note Management. 5

2.3 KDE Semantic Features . 5
2.3.1 Kontact. 6
2.3.2 Other Applications . 7
2.3.3 Kerry - Beagle Desktop Search in KDE 8
2.3.4 Strigi - Fast Desktop Search . 8
2.3.5 Tenor . 9

2.4 KDE Social Features . 9
2.4.1 Decibel . 9
2.4.2 File Sharing . 10
2.4.3 Social Networks Visualiser . 10

2.5 KDE Architecture. 10
2.5.1 The kdelibs. 11
2.5.2 D-Bus Architecture . 11

3 KDE Community Involvement . 12
3.1 Nepomuk-KDE Presentation At aKademy 2006 12
3.2 The Nepomuk-KDE Web Portal . 12
3.3 Integration . 13

4 Nepomuk-KDE Prototype . 14
4.1 The Nepomuk-KDE Middleware. 14
4.2 KMetaData - Embedding Nepomuk Metadata into KDE .. . 15
4.3 The Core Services . 15

4.3.1 RDF Storage . 16
4.3.2 Resource Identification . 16

4.4 Local Search Service . 16
4.5 Annotation and Tagging . 16
4.6 Miscellaneous Tool Support . 18

4.6.1 KGense. 18
4.6.2 KRDFExplorer . 18

5 NEPOMUK-KDE Next Steps . 20
5.1 KDE Development . 20

5.1.1 Akonadi . 20
5.2 Nepomuk-KDE Development . 20

5.2.1 Nepomuk Components . 21
5.3 Integration of Nepomuk-KDE into Mandriva Linux 23
5.4 Community Involvement. 23

6 Conclusion . 24
A Nepomuk Desktop Ontology . 25
B Testing the Nepomuk-KDE components . 27

B.1 Preparations . 27

Deliverable D7.2 Version 1.1 v

Nepomuk 08.01.2007

B.1.1 Running a KDE4 session . 27
B.1.2 Installation of Nepomuk-KDE 28

B.2 Tagging a File . 28
B.3 Searching for Tagged Files . 29

C Programming with KNepClient . 30
C.1 Writing a Nepomuk-KDE client . 30
C.2 Writing and Publishing a Nepomuk Service 30

D Programming with KMetaData . 32
D.1 Using Resource Subclasses . 32
D.2 Using Resource Directly . 32
D.3 KMetaData Resource Manager . 33

E Examples . 34
E.1 KMetaData File Class . 34
E.2 Resource Annotation. 34
E.3 Resource Tagging . 34
E.4 GUI Interaction . 34

References . 36

Deliverable D7.2 Version 1.1 vi

Nepomuk 08.01.2007

1 Introduction

Nepomuk intends to realize and deploy a comprehensive solu-
tion – methods, data structures, and a set of tools – for extending
the personal computer into a collaborative environment, which im-
proves the state of art in online collaboration and personal data
management and augments the intellect of people by providing
and organizing information created by single or group efforts.

To be really successful, the Nepomuk project needs not only to realize and
deploy an innovative approach for collaborative knowledge work, but also to
integrate the Nepomuk framework into mainstream desktop environments and
development platforms. In accordance with the Metcalfe’s law1 related to the
network effects of communication technologies, the value of the Nepomuk
platform will depend on the number of its adopters. Thus, since Nepomuk is
developed as an open and extensible platform, community work is a very im-
portant part of the project. Already in early stages of the project, open-source
communities have to be involved in the development process to make them
aware of the progress in Nepomuk, let them know their input is important,
and finally trigger their interest in the project’s technologies.
Nepomuk is a desktop project which immediately leads to the big players
in open-source desktops today. The K Desktop Environment, short KDE, is
certainly one of the most well known and vastly used desktop environments
available on the Linux/Unix platform. An integration of Nepomuk APIs, ontolo-
gies and technologies into the KDE system would mean a big step towards
real acceptance and use of the Nepomuk standards.
As a result of these considerations, in October 2006 the Nepomuk-KDE project
was born. Nepomuk-KDE is a sub-project of Nepomuk which aims to provide a
full implementation of the standards and APIs defined in Nepomuk on the KDE
Desktop by introducing the technologies to the KDE community and helping
with an integration as a central KDE technology. As a sub-project of Nepo-
muk, the main issues are (i) the use of interoperable metadata throughout
the desktop applications (ii) powerful peer-to-peer collaboration features (iii)
advanced user interfaces for dealing with semi-structured data.
Implementing the Nepomuk standards in an established system like KDE has
many advantages over a reference implementation using the Java program-
ming language as used throughout the Nepomuk project. KDE has a broad
user base which means that the technologies introduced in KDE reach a broad
audience and get tested thouroughly. Also components developed especially
for a platform like KDE are easy to integrate with the existing framework and
existing applications. This is also true for the non-technological area: appli-
cation developers will be eager to pick up and use new KDE technologies in
their applications. KDE already provides many useful technologies that other-
wise would have to be re-implemented, like for example a full Linux inotify2

integration, which makes monitoring file system changes very easy.
In the first phase of the Nepomuk-KDE project, the focus lay on the metadata
part. There are basically three kinds of metadata to be found on the desktop:

1. Metadata that can be found in files stored on the local hard disk like
tag information in audio files, timestamps, or simple indexed text. This
metadata can be extracted and indexed at any time and is exactly the
type of information current desktop search projects like Beagle or Strigi
are based on.

1http://en.wikipedia.org/wiki/Metcalfe's_law: Metcalfe’s law states that the value of a
telecommunications network is proportional to the square of the number of users of the system.
First formulated by Robert Metcalfe in regard to Ethernet, Metcalfe’s law explains many of the
network effects of communication technologies and networks

2http://en.wikipedia.org/wiki/Inotify: inotify is a Linux kernel subsystem that provides
file system event notification.

Deliverable D7.2 Version 1.1 1

http://en.wikipedia.org/wiki/Metcalfe's_law
http://en.wikipedia.org/wiki/Inotify

Nepomuk 08.01.2007

2. Metadata created manually by the user. In the most simple case this can
be a comment to a file or an email, but it could also mean the grouping
of several resources under one topic and so on.

3. Metadata that cannot be extracted easily by an indexer and is not gen-
erated by the user manually but by an application in the background.
This includes for example the URL of a file that is downloaded from the
Internet. Once saved on the local hard disk this information is lost. The
same goes for the (rather popular) example of email attachments: once
an email attachment is saved to the local hard disk its connection to the
email and with it the connection to the sender is lost. These are just two
examples relating to the source of files. There are many more.

The goal of the Nepomuk-KDE project in its first phase was to create facilities
to allow each KDE application to take advantage of this metadata. That means
that a KDE application can easily create new metadata, search metadata,
search relations between resources based on metadata, and so on.
All code produced within the Nepomuk-KDE project will be released under the
GPL3 or the LGPL4.
This document presents what has been accomplished in the Nepomuk-KDE
project so far. Section 2 gives an introduction to the KDE in general and dis-
cusses previous attempts of adding semantics to the desktop. In section 3, the
steps that have been undertaken to get the community involved are presented.
Section 4 discusses the actual implementation and integration of Nepomuk
technologies in the KDE so far. Section 5 gives an outlook on the next phase
of the Nepomuk-KDE project in 2007 and 2008. Finally, section 6 makes some
concluding remarks on the progress in the first months of the project.

3http://www.gnu.org/copyleft/gpl.html
4http://www.gnu.org/copyleft/lgpl.html

Deliverable D7.2 Version 1.1 2

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lgpl.html

Nepomuk 08.01.2007

2 KDE State Of The Art

This section presents an overview of what KDE is, what applications are avail-
able, and which semantic and social features can already be used or are being
worked on beside the Nepomuk initiative.
The KDE web portal5 describes KDE as follows.

KDE is a powerful Free Software graphical desktop environment
for Linux and Unix workstations. It combines ease of use, con-
temporary functionality, and outstanding graphical design with the
technological superiority of the Unix operating system.

KDE, however, is much more than that. KDE consist of the following parts:

• A powerful graphical desktop environment.

• A network transparent application development framework based on the
QT libraries.

• A vast collection of desktop applications and tools for nearly all purposes,
including a complete office suite KOffice and the personal information
management suite KDE-Pim including among others an email client, a
calender, and an address book.

• A big community of developers and users backed up by many companies
from the open-source world

Figure 1: The KDE desktop environment in action

2.1 A Little KDE History

The KDE project was founded in October 1996 by Matthias Ettrich. He pro-
posed a new kind of graphical desktop environment for Linux/Unix systems
and shortly many interested people joined the KDE effort.

5KDE portal: http://www.kde.org

Deliverable D7.2 Version 1.1 3

http://www.kde.org

Nepomuk 08.01.2007

The first version of KDE was released on July 12, 1998 under the GPL6 and was
based on QT7 1.4. By that time, QT was not released under an open license
compatible to the GPL yet, which was a problem for many and led to the start
of the Gnome project8. On September 4th, 2000 QT was finally released under
the GPL, once and for all removing all criticism in this area. From then on,
KDE development went on with a fast pace. KDE 2.0 was released on October
23th, 2000 and marked a very important step for the KDE project. It also
marked the official birth of the KOffice office application suite.
By that time KDE already had a vast user base and was supported by many
companies. Key players in the Linux segment such as Mandrake Linux (now
Mandriva Linux)9 or SuSE10 used KDE as their default desktop11 and con-
tributed to its success.
The release of KDE 3.0 on April 3rd, 2002 was the next big step in KDE
development. It came with a new printing system based on CUPS12 and was
already translated into more than 50 languages. With the 3.0 release many
parts of KDE had majored like KMail, the email client, or Konqueror, one of the
cornerstones of the KDE desktop.
Today, the most recent version of the KDE project being 3.5.5, KDE is prob-
ably the most complete and advanced open-source desktop system and de-
velopment environment available. It ships with a basic desktop and fifteen
other packages covering personal information management, administration,
network, edutainment, utilities, multimedia, games, artwork, web develop-
ment and more. KDE’s award-winning tools and applications are available in
65 languages.

2.2 KDE - Personal Information Management

This section presents some of the better known KDE applications concerned
with personal information management, starting with the most important: the
KDE-Pim suite13. The goal of KDE-Pim is to provide an application suite to
manage personal information. This includes mail, time, people and more. The
main result is KDE Kontact.

2.2.1 Kontact

Kontact is the shell that combines all the separate applications of the KDE-Pim
suite through the power of KDE’s KPart technology (a KPart is a sort of plug-in
that brings its own GUI as well as menu and toolbar elements with it):

• KMail: KMail is a very powerful email client. It supports the major email
transportation protocols such as POP3, IMAP, and SMTP, reading of HTML
mails, has anti-spam functionalities, provides spell-checking and power-
ful search and filter functions . KMail also has very enhanced privacy

6General Public License
7QT: http://www.trolltech.com/products/qt/. QT is a cross-platform application devel-

opment framework, widely used for the development of GUI programs. QT is most notably used in
KDE, the web browser Opera and Qtopia. It is produced by the Norwegian company Trolltech. QT
is written in C++ and comes with bindings for Python, Ruby, PHP, C, Perl, Pascal, C# and Java. It
runs on all major platforms, and has extensive internationalization support.

8Gnome: http://www.gnome.org. Gnome is to date the biggest competitor of KDE on the
open desktop market.

9Mandriva Linux: http://www.mandrivalinux.org
10SuSE: http://www.suse.com
11Mandriva and SuSE still use KDE as their default desktop environment in their latest distribu-

tion versions.
12CUPS: http://www.cups.org
13KDE-Pim: http://pim.kde.org

Deliverable D7.2 Version 1.1 4

http://www.trolltech.com/products/qt/
http://www.gnome.org
http://www.mandrivalinux.org
http://www.suse.com
http://www.cups.org
http://pim.kde.org

Nepomuk 08.01.2007

and encryption features and is certainly one of the most important and
popular KDE applications to date.

• KOrganizer: KOrganizer is the KDE calendar application. It can be used
as a personal organizer.

• KAddressbook: KAddressbook is the KDE address management applica-
tion. It manages all contacts within KDE. It is tightly integrated into
KMail and KOrganizer and has advanced features such as import and
export to nearly every address book standard, LDAP server support, and
a powerful search functionality.

• KNotes: KNotes is the KDE tool that allows writing short notes which can
be sticked to the desktop.

• KNode: KNode is the default KDE news reader. It supports multiple news
server, reading and composing of news articles, or inline text and image
attachments.

These applications form the basis of each KDE desktop’s personal information
management installation. They are part of the official packages maintained
within KDE and have a big fan base.

2.2.2 Kopete

Kopete14 is the instant messenger (IM) application in KDE. It supports most
used IM protocols like AIM, ICQ, MSN, Yahoo, Jabber, IRC, Gadu-Gadu, or
Novell GroupWise Messenger through a sound plug-in interface which allows
the addition of arbitrary additional communication protocols.

2.2.3 Basket - Advanced Note Management

Basket is a nice KDE application that allows to collect all kind of information in
a so called basket. It is possible to store text, pictures, links, files, and much
more in a named container. Thus, Basket provides an enhanced notepad.
The simplest usage of Basket is to just drag arbitrary pieces of information to
the “basket” and group them under a certain topic.

2.3 KDE Semantic Features

Semantic features in KDE (as of this writing, the current version of the KDE
is 3.5.5) are very limited. KDE itself, i.e. the kdelibs, which are described in
the kdelibs section below, provides a plug-in system for metadata extraction
of type 1. An example is an extractor for the Id3 tags in mp3 files. This
metadata, however, is only displayed on user request for a selected file, for
example from the file manager Konqueror. This is shown in figure 2.
Other semantic features are restricted to tags or comments in applications like
digiKam (see section 2.3.2) or in KDE-Pim (see section 2.3.1). These semantic
annotations, however, can only be used in the application itself and cannot be
accessed anywhere else.

14Kopete: http://kopete.kde.org

Deliverable D7.2 Version 1.1 5

http://kopete.kde.org

Nepomuk 08.01.2007

Figure 2: Konqueror - Displaying metadata

2.3.1 Kontact

The KDE-Pim applications already provide very rough semantic information.
Contacts and appointments in KOrganizer can be assigned categories. These
categories, however, are again restricted to the applications themselves and
even KAdressbook and KOrganizer do not share their categories. Both applica-
tions provide very simple search functionalities that allow to find contacts or
appointments also by selected categories. But again, it is not possible to au-
tomatically find the connection between a contact and an appointment based
on a shared category. Figure 4 shows an example of how appointments are
ordered into categories in KOrganizer.
KMail, the email client does not yet offer any tagging mechanism such as the
categories in KOrganizer or KAdressbook. Thus, emails can not be assigned
to arbitrary categories. It only provides simple IMAP-based tagging of emails
such as “mark as important” or “mark as todo” which can then be used to find
emails within a folder. Figure 3 shows the procedure of marking an email in
KMail. Just as with KOrganizer and KAdressbook, these markers are restricted
to the application and the mail tree itself.

Figure 3: KMail - Marking emails within the application

The categories in KOrganizer and KAdressbook and the markers in KMail can
be seen as the only pseudo-semantic features in KDE-Pim. Cross-references
between the various KDE-Pim applications and searching through more than
one application is not yet supported.

Deliverable D7.2 Version 1.1 6

Nepomuk 08.01.2007

Figure 4: KOrganizer - Selecting categories for an appointment

2.3.2 Other Applications

Some applications designed for and with KDE support simple tagging. One ex-
ample is the picture management application digiKam. DigiKam sorts pictures
into albums which correspond to folders on the local hard disk. Additionally,
arbitrary tags can be assigned to pictures. Figure 5 shows how these tags can
then be used to filter pictures through virtual albums that represent the tags.
The tags in digiKam, however, are restricted to the applications and cannot be
used outside of it. Thus, it is not possible to tag different types of data with
the same tag.

Figure 5: Tagging pictures in digiKam

Deliverable D7.2 Version 1.1 7

Nepomuk 08.01.2007

2.3.3 Kerry - Beagle Desktop Search in KDE

The Kerry project15. Kerry aims at integrating desktop search based on Bea-
gle16 into KDE. It provides a KDE front-end to the Beagle search engine which
allows to search for files using their metadata.

Figure 6: Kerry - KDE Beagle desktop search

The Beagle system extracts metadata of type 1 from all files on the local hard
disk and stores them in an index which allows to search for files based on
their metadata. Although Beagle also supports some more uncommon types
of metadata like subject and sender information from emails stored locally, this
information is sorted into arbitrary fields and does not follow a defined style,
unlike the approach followed by the use of the Nepomuk Desktop Ontology,
(appendix A).
Beagle is implemented in C#. It is considered by the KDE community as very
memory hungry and thus, it can only be a temporary solution for the KDE
desktop. The KDE developers favour the the Strigi approach, presented in the
Strigi section 2.3.4.

2.3.4 Strigi - Fast Desktop Search

Strigi17 is, like Beagle, a desktop metadata indexer and searching tool. Other
than Beagle, however, it is written entirely in C++ and is much faster and less
memory hungry. Strigi consists of a daemon which indexes files in selected
folders using metadata extractor plug-ins and a KDE interface that allows to

15Kerry: http://kde-apps.org/content/show.php?content=36832
16Beagle: http://beagle-project.org/
17Strigi: http://www.vandenoever.info/software/strigi/

Deliverable D7.2 Version 1.1 8

http://kde-apps.org/content/show.php?content=36832
http://beagle-project.org/
http://www.vandenoever.info/software/strigi/

Nepomuk 08.01.2007

search the indexed information. Strigi is under heavy development and is cur-
rently favoured over Beagle by the KDE community. Its stream-based meta-
data extraction system is very promising and will hopefully be merged into the
KDE metadata facilities.

2.3.5 Tenor

Tenor [5] is the name of a contextual linkage framework for KDE designed
by Scott Wheeler. It aims at addressing the management of metadata of all
types. Tenor is based on the idea of nodes and links between these nodes,
which then form the Tenor-graph. Nodes represent the resources while links
describe arbitrary relations between the resources. Nodes and links can have
properties assigned. The primary function of node properties is to limit the
domain of graph traversal while link properties provide a means to specify
more fine grained information to the application space.
The idea of Tenor is to have the applications and the user fill the Tenor-graph
with as much information as possible and exploit this information later on to
improve the way we handle data on the desktop today.
The KDE community had very high hopes for the Tenor framework but de-
velopment seems either have stalled or it continues in private. Whichever,
there was no possibility to merge the existing work in Tenor into the Nepo-
muk-KDE project and thus, a similar system, namely KMetaData presented in
section 4.2, was started from scratch.

2.4 KDE Social Features

In the context of Nepomuk, desktop social aspects mainly relate to P2P desk-
top communication, trust networks, collaborative recommendation, distributed
metadata indexing and social networks analysis. This section gives an overview
on existing initiatives covering some of these topics in the realm of KDE, in
order to assess which KDE sub-communities may be targeted for an in depth
integration of the Nepomuk social components - i.e. mainly Nepomuk WP4000
and WP5000 components - into the KDE desktop.

2.4.1 Decibel

As described on Wikipedia, Decibel18 is “a new communication framework for
KDE4, [aiming at] integrating all communication protocols into the desktop.
As of now they have all their contacts in different applications: AOL, MSN,
E-mail, Skype, etc. Decibel wants to put all contacts in one place and make
it easier for the user to manage and communicate with his/her contacts. For
example Alice wants to talk to Bob. Alice requests to start a connection to Bob
and a service manager, known as ‘Houston’ takes in the requests and choose
the best way to communicate to Bob (depending on telephone number, e-mail
address, etc), and opens up a connection to Bob. This way Alice can contact
her friends no matter what protocol they are best contacted with.”
It is worth pointing out that Decibel shares some concerns with the Eclipse
Communication Framework19 in providing a high level service for abstracting
the protocols used for information exchange across the desktops. In this
context as well, Nepomuk can act as a federator between several existing ini-
tiatives, so that the Nepomuk APIs can be used indeed above various desktop

18Decibel: http://en.wikipedia.org/wiki/Decibel_(KDE), http://decibel.kde.org/
19Eclipse Communication Framework: http://www.eclipse.org/ecf/

Deliverable D7.2 Version 1.1 9

http://en.wikipedia.org/wiki/Decibel_(KDE)
http://decibel.kde.org/
http://www.eclipse.org/ecf/

Nepomuk 08.01.2007

environment frameworks, namely KDE, Eclipse and Mozilla.
Decibel is sponsored by the company basysKom20, a prominent actor in the
adoption of the KDE desktop by industrial users.

2.4.2 File Sharing

Within the vast collection of available KDE applications, also exist many file
sharing tools. KTorrent21 for example is a BitTorrent client for KDE and prob-
ably the most popular KDE file sharing application to date. KMLDonkey22,
a client for the edonkey200023 p2p network or Apollon24, a client for the
giFT25 daemon which supports file sharing protocols such as OpenFT26, Fast-
Track(Kazaa!)27, Gnutella28, or OpenNap29 are all dedicated to mere file shar-
ing over fixed protocols. An integration of Nepomuk technologies with these
tools seems mostly inappropriate.
It might, however, be of interest to integrate these file sharing technologies
within a new Nepomuk-KDE social component which then supports the usage
of arbitrary sharing and communication protocols.

2.4.3 Social Networks Visualiser

SocNetV30 is “an application for the Linux desktop written in C++/Qt3. Its
main objective is to provide a sensible means for Social Networks Analysis and
Visualization on the Linux platform. [With SocNetV] you can read and visualize
various network file formats and/or visually create and modify a network using
your mouse. SocNetV will happily compute network and actor properties, such
as distances, centralities, diameter etc.”
SocNetV may be used as an entry point for exploring social networks in a KDE
environment, in particular in the case of the Mandriva community case study
WP11000, which requires an in depth integration with the KDE framework.

2.5 KDE Architecture

Since the goal of the Nepomuk-KDE project is to bring social semantic features
into all parts of KDE, i.e. all KDE applications and tools, it is important to build
upon and extend the existing architectures in KDE. This section gives a brief
overview of the main development artifacts of the KDE framework.

20basysKom: http://www.basyskom.de. basysKom Managing Director is Eva Brucherseifer,
President of the German KDE community (KDE e.V.). basysKom is actively involved in supporting
and promoting the KDE development project.

21KTorrent: http://www.ktorrent.org
22KMLDonkey: http://kmldonkey.org/
23eDonkey2000: http://en.wikipedia.org/wiki/EDonkey2000
24Apollon: http://apollon.sourceforge.net
25giFT: http://gift.sourceforge.net
26OpenFT: http://en.wikipedia.org/wiki/OpenFT
27FastTrack: http://en.wikipedia.org/wiki/FastTrack
28Gnutella: http://www.gnutella.com
29OpenNAP: http://opennap.sourceforge.net
30SocNetV: http://kde-apps.org/content/show.php?content=34591

Deliverable D7.2 Version 1.1 10

http://www.basyskom.de
http://www.ktorrent.org
http://kmldonkey.org/
http://en.wikipedia.org/wiki/EDonkey2000
http://apollon.sourceforge.net
http://gift.sourceforge.net
http://en.wikipedia.org/wiki/OpenFT
http://en.wikipedia.org/wiki/FastTrack
http://www.gnutella.com
http://opennap.sourceforge.net
http://kde-apps.org/content/show.php?content=34591

Nepomuk 08.01.2007

2.5.1 The kdelibs

The central part of the KDE development framework, and thus, the part every-
thing else is built upon in KDE, are the kdelibs31. The kdelibs provide a vast
collection of classes to handle all kinds of situations like network transparent
file handling, advanced GUI features like editable toolbars, spell checking inte-
gration, or even a complete HTML engine. The kdelibs are developed by some
of the best people in the open-source community and used by hundreds of
applications.
To get an overview of the power of the kdelibs, the reference API32 or the
tutorials on the KDE developer web site33 are a good starting point.

2.5.2 D-Bus Architecture

D-Bus34is the inter-process communication system used in the upcoming forthOverview
version of KDE35. D-Bus consists of three components: a library implemented
in C that allows applications to connect to each other and exchange messages,
a daemon that can route messages between applications and provides the
central communication point in most D-Bus setups, and a collection of wrapper
libraries (bindings) that allow a simple usage of the D-Bus library from other
programming languages and environments. The most elaborate bindings to
date are the QT4 bindings which are used in KDE 4.
D-Bus was especially designed for communication between desktop applica-
tions in the same session and the operating system (HAL36 is probably the
best known example for communication with the operating system). D-Bus is
developed as a pseudo-standard at freedesktop.org37 and is quickly becoming
the default communication system on the Linux desktop.

Architecture
In the D-Bus system, each application gets assigned a unique identi-
fier (for example :̈1.10)̈ and can optionally register one or more names.
The Nepomuk-KDE Middleware service registry for example registers as
org.semanticdesktop.nepomuk.ServiceRegistry. An application may then ex-
port an arbitrary number of objects, each providing an arbitrary number of
interfaces. Each interface defines methods and signals. Thus, a method in the
D-Bus system is identified by four tokens: the D-Bus service id (i.e. the unique
identifier), the object path, the interface name, and the method name38. This
is best made clear with an example.
Let some application define a method helloWorld which shows a window
stating the words “Hello World!”. The application could export this method via
D-Bus. It could register as org.example.HelloWorld and export the interface
org.example.helloworld.test on the /Test object:

org.example.HelloWorld
- /Test

- org.example.helloworld.Test
- helloWorld()

31kdelibs API: http://api.kde.org/cvs-api/kdelibs-apidocs/
32kdelibs API: http://api.kde.org/
33KDE devel: http://developernew.kde.org/
34D-Bus: http://dbus.freedesktop.org
35D-Bus replaces DCOP as the default desktop communication protocol in KDE 4
36HAL: http://hal.freedesktop.org/
37freedesktop.org (http://www.freedesktop.org) is a working group focusing on interoper-

ability and shared technology for X Window System desktops, in particular GNOME and KDE,
although developers working on any Linux/UNIX GUI technology are welcome to participate.

38It is common practice to choose D-Bus identifiers and interface names according to the web
URL of the owner of the application. Thus, all KDE applications are named org.kde.appname.

Deliverable D7.2 Version 1.1 11

http://api.kde.org/cvs-api/kdelibs-apidocs/
http://api.kde.org/
http://developernew.kde.org/
http://dbus.freedesktop.org
http://hal.freedesktop.org/
http://www.freedesktop.org

Nepomuk 08.01.2007

3 KDE Community Involvement

One of the main tasks of the Nepomuk-KDE project beside the implementation
of semantic KDE features is the involvement of the KDE community. It is es-
sential to the success of the Nepomuk project that the developed technologies
are picked up and used in important projects such as KDE. Only then will the
Nepomuk project have the chance to actually establish standards throughout
the desktop world.
This section gives an overview of the KDE community activities in the Nepo-
muk-KDE project.

3.1 Nepomuk-KDE Presentation At aKademy 2006

The Nepomuk-KDE project was presented at the annual KDE developer con-
ference aKademy 200639 in Dublin. This was also the first mentioning of
the project to the KDE community ever. The response was positive, clearly
the vision of a “social semantic KDE desktop” is very important to the KDE
community. Especially the KDE-Pim team was very interested in what will be
achieved in the near future and was eager to help with the integration into
their new PIM data storage Akonadi40. It was already noted on the conference
that semantic technologies developed withing Nepomuk-KDE are candidates
for inclusion in the kdelibs. Section 3.3 presents another success story.
During the conference, there has been a lot of discussion, especially with Jos
van den Oeven, the author of the Strigi desktop search and indexing tool,
about what Nepomuk-KDE should and will achieve. The main focus of interest
in the KDE community seems to be on file tagging and desktop search at the
moment. Projects like Beagle or the Google desktop search which are the
current state of the art mainly trigger this interest. Sections E.3 and 4.4 show
the progress that has been already made in this area within the Nepomuk-KDE
project.

3.2 The Nepomuk-KDE Web Portal

As part of the Nepomuk-KDE project, in order to present the goals and progress
of the project, and also to raise interest across the community, a wiki has been
created41, as illustrated by figure 7. This wiki is intended to be a portal for
developers and users of the Nepomuk-KDE project. It provides information
about all the Nepomuk-KDE sub-projects, information for developers, and the
project in general. Contrary to the internal Nepomuk wiki, it is open to the
public, inviting the community to take part in the development.
In addition, a public Nepomuk-KDE mailing-list42 has been created and has
already received attention from a lot of interested people (33 subscribers to
date beside Nepomuk internal participants). Most of the current development
discussions, however, take place in the #nepomuk-kde IRC channel and in the
KDE mailing-lists like kde-core-devel43.

39aKademy 2006: http://conference2006.kde.org/
40Akonadi: http://pim.kde.org/akonadi/. The project aims at “designing an extensible

cross-desktop storage service for PIM data and metadata providing concurrent read, write, and
query access”.

41Nepomuk-KDE wiki URL: http://nepomuk-kde.semanticdesktop.org
42Nepomuk-KDE mailing-list: https://nepomuk.semanticdesktop.org/wws/info/

nepomuk-kde
43http://lists.kde.org

Deliverable D7.2 Version 1.1 12

http://pim.kde.org/akonadi/
http://nepomuk-kde.semanticdesktop.org
https://nepomuk.semanticdesktop.org/wws/info/nepomuk-kde
https://nepomuk.semanticdesktop.org/wws/info/nepomuk-kde

Nepomuk 08.01.2007

Figure 7: The Nepomuk-KDE wiki home page

3.3 Integration

Since Nepomuk-KDE is intended to provide semantic features for KDE, it is de-
veloped in the KDE subversion repository (Appendix B.1.2 describes details on
how to use the repository), thus, already taking advantage of the KDE develop-
ment process which for example includes translations of all GUI components.
This early integration into the working branch of the KDE development favours
the adoption of the Nepomuk-KDE achievements by the upcoming mainstream
KDE releases.
The goals and work already done in Nepomuk-KDE have attracted some of
the important characters in the KDE community which resulted in a move of
parts of Nepomuk-KDE (the most important part here is KMetaData, which is
presented in section 4.2.) into the main KDE libraries. As of this writing the
move is planned but not performed yet. Once done, however, Nepomuk-KDE,
and with it Nepomuk technologies will be available to all KDE developers: a
big step towards a semantic KDE based on Nepomuk has been taken.

Deliverable D7.2 Version 1.1 13

Nepomuk 08.01.2007

4 Nepomuk-KDE Prototype

Besides sparking off Nepomuk-KDE community uptake, the Nepomuk-KDE
project is about implementing the standards defined in the Nepomuk project
on the KDE platform. In this section, the state of the development as of this
writing is presented.

4.1 The Nepomuk-KDE Middleware

The Nepomuk middleware [3] is the central communication hub in the Nepo-
muk system. The middleware communication is designed to be platform and
technology independent. This is realized by the introduction of a federation of
service registries, each of which implement a certain type of communication.
Nepomuk services are developed for a specific type of communication and,
thus, for a specific middleware implementation. Figure 8 shows an overview
of the middleware architecture.
While the core Nepomuk middleware task force is implementing a reference
implementation of the middleware based on Java/OSGi 44 the Nepomuk-KDE
project realizes the same for the KDE/QT platform with D-Bus communication.

Figure 8: Nepomuk middleware components - KNep Service Registry imple-
ments the middleware registry and KNep Client implements the middleware
library

Both implementations (Java/OSGI and KDE/D-Bus) were developed in parallel
during the definition phase of the middleware API. This allowed the middle-
ware task force to have direct real-life experiences and feedback. Problems
could be detected and solved early and the result was not only an abstract
standard but two implementations. The second one, realized in the KNep
package is presented in this section.
KNep consists of two parts:

• The KNep Service Registry is a KDE daemon module that implements the
service registry as defined in the Nepomuk middleware. It provides its
functionality like service registration and discovery via a D-Bus interface.

• The KNepClient library implements the service client library defined in
the Nepomuk middleware with a QT/KDE API. It provides a wrapper
around the D-Bus communication used between the services and the
service registry for simple service discovery and publishing. Appendix C
presents details of the API.

44OSGi: http://www.osgi.org

Deliverable D7.2 Version 1.1 14

http://www.osgi.org

Nepomuk 08.01.2007

4.2 KMetaData - Embedding Nepomuk Metadata into KDE

One of the first usages of the KNepClient library is the KMetaData library. It is
based on and provides a convenience wrapper around the Nepomuk Desktop
Ontology to handle metadata in KDE applications.
As already pointed out in the introduction three types of metadata can be
identified:

1. Metadata that is stored with the data itself and is available at all times.
This includes id3 tags, the number of pages in a PDF document, or even
the size of a file or the subject of an email.

2. Metadata that is created by the user manually like annotations or tags
that are assigned to files, emails, or whatever resources.

3. Metadata that can be gathered automatically by applications such as the
source of a downloaded file or the email an attachment was saved from
or the original when copying a file locally.

Type 1 is already handled in many implementations. KDE itself includes the
KMetaFileInfo framework that allow extracting this kind of meta information
from files.
KMetaData is intended for metadata of type 2 and 3. It provides an easy
way to create and read metadata for arbitrary resources (this includes for
example files or emails, but also contacts or maybe even a paragraph in a PDF
file). The simplest type of metadata that can be handled with KMetaData is a
comment. It is a simple string associated with a resource (a file for example).
This comment is created by the user using an application that is based on
KMetaData. KMetaData’s core is designed to allow arbitrary types of meta
data45, i.e. any resource can be related with any other resource or value by
simply naming the relation and providing the value. The power of KMetaData,
however, lies in that it provides a C++ class for each type of resource. Each
of these classes provide convenience methods to allow a simple handling of
the metadata.
The types of resources and their properties are defined in the the Nepomuk
Desktop Ontology which is discussed in appendix A. KMetaData’s build sys-
tem includes a code generator which creates one C++ class for each RDF
class/type defined in the ontology. An example or such a class can be seen in
appendix E.1.
KMetaData is resource based. Thus, working with KMetaData is always done
with instances representing a certain resource. This resource has a list of
properties. Properties are named and have a certain type. The type can either
be another resource (compare a file that was an attachment from an email)
or a literal (this means for example a string, or an integer; the comment
mentioned earlier would be a string literal). Each property can either have a
cardinality of 1 (again a file can only be saved from one email) or greater than
1 (i.e. infinite, like one file can have arbitrary many associated comments).
This restriction naturally evolves from the usage of lists vs. single values.
Appendix D shows how KMetaData handles literals and cardinalities greater
than 1.

4.3 The Core Services

The Nepomuk-KDE middleware ships with a set of core services which are
necessary to use the Nepomuk-KDE system at all and thus have to be installed
as the core Nepomuk-KDE runtime.

45In fact, KMetaData roughly implements the NRL/RDFS standard as a C++ class library but is
optimized for the Nepomuk Desktop Ontology.

Deliverable D7.2 Version 1.1 15

Nepomuk 08.01.2007

4.3.1 RDF Storage

The RDF storage service implements the RDFRepository interface as defined in
Nepomuk by work package 2 [2]. This service is based on the Soprano/QRDF
package which has been developed within Nepomuk-KDE. It has been devel-
oped in close cooperation with the Nepomuk RDF-API task force. This allowed
to test and optimize it in a very early stage.
The Nepomuk-KDE RDF storage service provides a D-Bus interface which al-
lows to add, remove, and list RDF statements and also query RDF models
using the SPARQL46 query language.

4.3.2 Resource Identification

The resource identification service is implemented in Nepomuk-KDE as a very
simple resource URI matcher which makes sure that local file URIs are not
stored multiple times (/home/foo/bar = file:///home/foo/bar).
Section 5.2.1 states how the resource id service should be extended in the
future.

4.4 Local Search Service

Metadata created via KMetaData alone does not help the user much yet. It
has to be at least searchable. Thus, a plug-in for the Strigi desktop search
engine47 has been written that allows Strigi to index Nepomuk metadata. This
has the effect that it is possible to find desktop resources48 that have been
annotated or tagged via KMetaData with a simple Strigi desktop search.
Appendix B.3 shows how this integration can be tested.

4.5 Annotation and Tagging

To demonstrate the power of the current Nepomuk-KDE libraries (i.e. KNep
and KMetaData), simple client applications have been implemented that allow
to annotate and tag files from within the Konqueror file browser or from the
command line as can be seen in figure 9. The data, i.e. the annotations and
the tags are stored within the Nepomuk-KDE RDF storage service. Figures 9
and 10 show example views of the applications graphical user interfaces.
The simple annotator allows to add comments to arbitrary files. The URI of
the file resource has to be provided on the command line (this is exactly what
Konqueror does when calling the annotator from the context menu: it adds
the URL of the file to annotate to the call). The annotation is then associated
with the file in question via KMetaData and thus, synchronized automatically.
Section 4.4 shows how this new information can be used to simply relocate
the file in question.
The simple tagger on the other hand allows the creation of new tags (simple
topics which are used to group resources) and assign these tags to files (in
general the simple tagger can be used to assign tags to arbitrary resources

46 SPARQL: http://www.w3.org/TR/rdf-sparql-query/
47Strigi has been selected over Beagle because it is much faster, has a much lower memory

footprint, and is written in C++. Apart from that Strigi is likely to be integrated into KDE soon as
the default desktop search engine.

48In its current implementation state, Strigi mainly indexes files but a plug-in to handle Akonadi
PIM resources is in development. One of the next steps will be to include Nepomuk metadata for
PIM resources in the Strigi index.

Deliverable D7.2 Version 1.1 16

http://www.w3.org/TR/rdf-sparql-query/

Nepomuk 08.01.2007

Figure 9: Simple-Annotator Konqueror 4 Integration

Figure 10: Annotating a resource with the Nepomuk-KDE simple annotator

Deliverable D7.2 Version 1.1 17

Nepomuk 08.01.2007

Figure 11: Tagging a file with the Nepomuk-KDE Simple Tagger

but since it is mainly called from the Konqueror which only handles files the
discussion is restricted to files also).

4.6 Miscellaneous Tool Support

Before the start of the Nepomuk-KDE project Nepomuk tool development un-
der KDE had already started. This section presents these tools that are not
strictly part of Nepomuk-KDE.

4.6.1 KGense

KGense has been developed by Edge-IT to serve as a generic search front-end
for various search engines such as Beagle, Strigi, or even Google web search
and display all results in one convenient user interface.

4.6.2 KRDFExplorer

The KRDFExplorer is not really part of the Nepomuk-KDE prototype. Its de-
velopment started before the Nepomuk-KDE project and it was not ported
yet.
KRDFExplorer is intended as an all-purpose RDF data querying tool for the
Nepomuk system as can be seen in figure 12. It provides advanced querying
capabilities and a convenience presentation of the data in the store.
As mentioned KRDFExplorer was not ported to Nepomuk-KDE yet. Thus, it is
still based on the Sesame RDF storage solution which is accessed via HTTP.
Porting the application to using KNepClient and the Nepomuk-KDE RDF storage
service instead should be an easy task.

Deliverable D7.2 Version 1.1 18

Nepomuk 08.01.2007

Figure 12: RDF browsing with KRDFExplorer

Deliverable D7.2 Version 1.1 19

Nepomuk 08.01.2007

5 NEPOMUK-KDE Next Steps

5.1 KDE Development

Roughly since the release of QT 4 the development on KDE 4 has started.
KDE 4 is intended as the next big step in Linux/Unix desktop systems. The
step from KDE 3 to KDE 4 is a big one which will give birth to many new tech-
nologies within KDE and allows to change a lot about the desktop in general.
Thus, the interest in semantic KDE features is big in the KDE community which
gives the Nepomuk-KDE project the chance to influence the direction of the
KDE desktop a lot. To accomplish this, however, it is important to closely work
with the KDE community and weight their opinion as important.
As already mentioned before the Nepomuk-KDE core parts, i.e. the middle-
ware and KMetaData are scheduled to be included into the kdelibs. Once this
move is complete, it is likely that the interest in the project will increase a lot
and people will start including semantic features into their applications49.

5.1.1 Akonadi

One major step in the KDE 4 development cycle is the Akonadi PIM data stor-
age system which will take care of storing all PIM data in the KDE. This allows
for an enhanced interoperability between PIM applications. It is important
to closely work with the Akonadi team to early integrate semantic features
into the Akonadi system or at least implement fast and reliable meta data
extractors supporting data stored in Akonadi.

5.2 Nepomuk-KDE Development

After the move of the core Nepomuk-KDE components (middleware and KMeta-
Data) into the kdelibs, it will be important to establish them and make sure
people use them. Thus, the example tagging and annotation applications de-
veloped within Nepomuk-KDE (see section 4.5) need to be replaced by real
applications and plug-ins that provide high usability for KDE.
KMail and the KDE-Pim components in general are the most important appli-
cations to be extended with semantic features. The first step will be to allow
tagging of emails, contacts, and calendar entries. Having generic tagging
support throughout the KDE desktop will already be a big leap forward.
Metadata that can be extracted from files such as the artist and title fields
in music files or the author of a PDF file is already handled well but there is
no standard that defines which meta data is defined for which type of data
(except the scattered specifications of the file formats). Thus, one goal is to
extend the Nepomuk Desktop Ontology in cooperation with the Nepomuk On-
tology task force that it may serve as a basis for all metadata on the desktop.
Then metadata of all types can be combined under one common API (prefer-
ably KMetaData) which allows application developer a very simple access to it
and also provides the basis for very powerful search and inference algorithms.
To reach this goal, KMetaData has to be extended to handle read-only meta
data and, more importantly, data from different sources. The kdelibs already
include a plug-in system to extract metadata from files, namely KFileMetaInfo.
This system has to be extended to support the Desktop Ontology and provide
its information to KMetaData. There has already been discussion with the
author of the Strigi indexing tool to merge the Strigi metadata extraction and

49In this first phase semantic features will mainly consist of generic tagging and annotation
support.

Deliverable D7.2 Version 1.1 20

Nepomuk 08.01.2007

caching with KDE’s metadata system.
Another important issue once KDE has been extended by semantic features
as described above is the “intelligent” usage of this new data. Desktop search
is the first step but is very dumb since it indexes only to a depth of one.
Semantic information, however, connects resources much more complicated
then just 1-to-1. Resources can be related less closely but related nonethe-
less. For example a document sent in an email by a person tagged to be
in the NEPOMUK group could also be relevant when searching for the term
“NEPOMUK”. Standard desktop search, however, will not pick it up since it is
not directly related. The graph has to be traversed from the tag to the person
to the email to the document to find the connection. Once links like this can
be exploited in the desktop search or in applications KDE will be already very
semantic.
The following list names the goals more specificly:

• Complete the move of the core Nepomuk-KDE components into the
kdelibs.

• Implement tagging support in the KDE-Pim components (KMail, KOrga-
nizer, KAddressBook, etc.).

• Implement easy and improved file tagging and annotation on the KDE
Desktop.

• In cooperation with the Nepomuk Ontology task force extend the Nepo-
muk Desktop Ontology to handle all necessary types of metadata.

• Extend KMetaData to handle meta data from multiple sources.

• Implement “intelligent” metadata querying based on the Nepomuk stor-
age services. A first step will be traversing the metadata graph in more
depth.

The following section list all Nepomuk components and state the plans regard-
ing their implementation and integration in Nepomuk-KDE.

5.2.1 Nepomuk Components

Middleware and Core
Services The currently existing implementation of the Nepomuk-KDE middleware and

the core services were created during the development of the component
specifications themselves. Thus, they do not match completely yet the spec-
ifications defined in the work packages WP2000 [2] and WP6000 [3]. One
of the next steps is thus, to adapt the core services in Nepomuk-KDE to the
exact specification of the WP2000 components, i.e. the PIMOService and the
RDFRepository.
This will finally allow Nepomuk-KDE components to properly interact with the
Java reference implementation developed in work package WP6000 and give
birth to the Nepomuk middleware federation.
A full implementation of the results of work package WP2000 includes an
adaption of the resource identification scheme for the KDE desktop. Since this
is without a doubt one of the most new and advanced part of the Nepomuk
middleware, an integration into the KDE will mean intense community work.

DataWrapper
A further implementation will mean realizing Strigi as a Nepomuk DataWrap-
per [2] which stores the indexed data in the Nepomuk RDFRepository. This
will serve as a first “real-life” test platform for the performance of the future
Nepomuk system and hopefully show the way into the future. Since the KDE

Deliverable D7.2 Version 1.1 21

Nepomuk 08.01.2007

community and even more so the Strigi development team have their own
plans regarding desktop search, the future of the Nepomuk-KDE project will
involve a lot of communication and negotiating between the Nepomuk stan-
dards which are intended to be realized in KDE and the current state of KDE.
The Nepomuk project is a very academic project which means clean and
mostly new solutions that have the luxury of starting from a fresh state. The
Nepomuk-KDE project, however, needs to adapt existing KDE technologies
and integrate them with Nepomuk ideas. The extent to which the Nepomuk
standards can actually be integrated indeed into existing KDE components will
be clarified in the second part of the project.
The Nepomuk-KDE local search service will be implemented on top of Strigi,Local Search Service
as introduced in the state of the art paragraph. Strigi will be extended to
implement the Nepomuk local search component.
One of the more straight-forward metadata creation tools is the rich seman-Rich Wiki
tic wiki component as specified within the workpackage WP1000[1]. The
WikiModel component designed by WP1000 is intended to be implemented
within Nepomuk-KDE in form of a semantic wiki editor based on Kate50. In
a first step, the editor will merely provide syntax highlighting and pass the
created text to a semantic wiki parser complying with the specifications of the
WikiModel component described in Nepomuk deliverable D1.1 [1]. In a later
phase, the wiki editor is intended to provide more elaborate features, fulfilling
the functional requirements expressed in the deliverable D1.1 [1].
Once specified by WP1000, the Nepomuk IMapping framework will be imple-IMapping Framework
mented and developed on top of the powerful graphical framework Qt4.
Although there are no specific plans yet, it might be possible to build uponPersonal Task Manager
existing applications like KOrganizer or TaskJuggler51 and extend them with
Nepomuk functionalities as specified by the workpackage WP3000. This would
make use of an existing user base and bring the Nepomuk task model ap-
proach directly to the user.
Creating a user context framework within KDE is a big task. The NepomukUser Context Service
interfaces and services defined in work package WP2000 will have to be com-
bined with either a plug-in system or a library that can be used by all KDE
applications. It is without a doubt desirable to integrate as much of the user
context service as possible directly into the kdelibs to automate a big part. It
is, however, still unclear how this can be accomplished.
Since a distributed index is quite independant from the graphical user inter-Distributed Index
face and can probably be developed encapsulated within the Nepomuk-KDE
components of KDE a realization will be a fairly straight-forward copy of the
reference implementation from work package 4 [4].
The simple desktop ranking functionality will be realized as part of the StrigiDesktop Ranker
desktop search.
The roadmap for this components will be defined once the first deliverable ofAdvanced

Recommendation
Algorithms

WP5000 has been issued.

The roadmap for this component will be defined once the first deliverable ofDetection and Labeling of
Communities WP5 has been issued.

The roadmap will be defined once the first deliverable of WP5000 has beenCommunity Structure
Analysis issued.

The roadmap will be defined once the first deliverable of WP5000 has beenTrust, Reputation and
Spam Prevention issued.

50Kate: http://www.kate-editor.org/. Kate project consists of KatePart, an advanced editor
component which is used in numerous KDE applications, and Kate, a MDI text editor application.
KatePart is part of kdelibs.

51TaskJuggler: http://taskjuggler.org

Deliverable D7.2 Version 1.1 22

http://www.kate-editor.org/
http://taskjuggler.org

Nepomuk 08.01.2007

5.3 Integration of Nepomuk-KDE into Mandriva Linux

Mandriva Linux is a Linux distribution created by Mandriva, one of the Linux
distribution leaders in the world, whose user base is ranked second as of
December 2006 by the popular Linux web site DistroWatch.com52. Mandriva
is directly involved into the Nepomuk project through its subsidiary Edge-IT,
which is spearheading the Nepomuk dissemination workpackage (WP7000)
and the Nepomuk Mandriva help-desk case study (WP11000).
The release cycle of the Mandriva Linux distribution is annual. However, in-
termediate releases are issued several times a year. The next release of the
mainstream Mandriva community version is scheduled for the first semester of
2007. This upcoming version will include the current snapshot of the KDE4 en-
vironment, which will comprise some of the Nepomuk-KDE libraries, properly
packaged, integrated and tested into the Mandriva Linux operating system.
Since KDE is the default graphical environment of Mandriva Linux, it is ex-
pected that this release will set off a vibrant uptake across the community of
users and developers.

5.4 Community Involvement

Once the Nepomuk desktop ontology has been established in KDE, it will be
proposed on freedesktop.org as an open standard. That would be the next big
step in unifying different desktop environments. Metadata could be handled
the same way in KDE as in Gnome or even on Windows systems.
For the first quarter of 2007 a Nepomuk-internal workshop is planned pre-
senting Nepomuk-KDE to the Nepomuk project partners. In January 2007 the
Nepomuk-KDE project will be presented at the Solutions Linux fair in Paris.

52DistroWatch: http://www.distrowatch.com

Deliverable D7.2 Version 1.1 23

http://www.distrowatch.com

Nepomuk 08.01.2007

6 Conclusion

The first months of the Nepomuk-KDE project can be regarded as very suc-
cessful. A working implementation of the Nepomuk middleware including the
core services has been realized and made public to the KDE community. First
simple client applications have been implemented and used to prove the use-
fulness of the concept.
The high point of the project so far is, however, the upcoming integration
of the Nepomuk-KDE middleware and KMetaData into the kdelibs. This will
drastically improve the awareness of Nepomuk-KDE and Nepomuk in general.
Hopefully it will also bring new developers to the effort and help speeding up
the realization of a social semantic KDE desktop.
Although negotiations between the KDE community and the Nepomuk project
are not always easy due to the differences in goals and work style, sound
foundations have been laid down for a very fruitful collaboration between KDE
and Nepomuk teams. KDE 4 is scheduled for mid 2007. It will include a first
version of the Nepomuk-KDE achievements. The upcoming releases of KDE 4
are expected to realize a complete KDE implementation of the Nepomuk Social
Semantic Desktop.
The importance of efforts like Nepomuk-KDE should be obvious. The imple-
mentation for a popular desktop like KDE will provide a wide acceptance of
the Nepomuk project in general, including users and developers.

Deliverable D7.2 Version 1.1 24

Nepomuk 08.01.2007

A Nepomuk Desktop Ontology

The metadata used throughout the Nepomuk-KDE project is based on the
Nepomuk Desktop Ontology. As of this writing it has not yet been defined. It
will however be based on NRL, the Nepomuk Representation Language which
is an XML language building on top of RDF/S.
Currently the KMetaData library uses a dummy place-holder ontology which
only defines tags and annotations (see listing 1).
<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:nrl="http://semanticdesktop.org/ontology/nrl-20061204#"

xmlns:nkde="http://nepomuk-kde.semanticdesktop.org/ontology/nkde-0.1#">

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#Thing">

<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

<rdfs:comment>Thing is the base class of nearly everything. It represents

all user-accessible resources. Thus, all Things can be annotated and

tagged.</rdfs:comment>

</rdf:Description>

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#Tag">

<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

<rdfs:comment>A Tag can be assigned to any Thing. This allows simple

grouping of resources.</rdfs:comment>

</rdf:Description>

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#hasTag">

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#

Property"/>

<rdfs:range rdf:resource="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#Tag"/>

<rdfs:domain rdf:resource="http://nepomuk-kde.semanticdesktop.org/ontology

/nkde-0.1#Thing" />

</rdf:Description>

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#hasAnnotation">

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#

Property"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<nrl:maxCardinality>1</nrl:maxCardinality>

<rdfs:domain rdf:resource="http://nepomuk-kde.semanticdesktop.org/ontology

/nkde-0.1#Thing" />

<rdfs:comment>Everything can be annotated with a simple string.</

rdfs:comment>

</rdf:Description>

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#hasName">

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#

Property"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<nrl:cardinality>1</nrl:cardinality>

<rdfs:domain rdf:resource="http://nepomuk-kde.semanticdesktop.org/ontology

/nkde-0.1#Tag" />

<rdfs:comment>A Tag is basicly a string value. The name of a Tag is all

there is.</rdfs:comment>

</rdf:Description>

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#EMail">

<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

<rdfs:subClassOf rdf:resource="http://nepomuk-kde.semanticdesktop.org/

ontology/nkde-0.1#Thing" />

</rdf:Description>

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

nkde-0.1#File">

<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

<rdfs:subClassOf rdf:resource="http://nepomuk-kde.semanticdesktop.org/

ontology/nkde-0.1#Thing" />

</rdf:Description>

<rdf:Description rdf:about="http://nepomuk-kde.semanticdesktop.org/ontology/

Deliverable D7.2 Version 1.1 25

Nepomuk 08.01.2007

nkde-0.1#hasLocation">

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#

Property"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<nrl:cardinality>1</nrl:cardinality>

<rdfs:domain rdf:resource="http://nepomuk-kde.semanticdesktop.org/ontology

/nkde-0.1#File" />

<rdfs:comment>The location of a File is it's URL or path.</rdfs:comment>

</rdf:Description>

</rdf:RDF>

Listing 1: The place-holder ontology used in KMetaData until the Nepomuk
Desktop Ontology has been drafted

Deliverable D7.2 Version 1.1 26

Nepomuk 08.01.2007

B Testing the Nepomuk-KDE components

This section provides a step-by-step guide on how to setup a KDE4 session
and the Nepomuk-KDE tools in order to test the current state of development.

B.1 Preparations

Since the Nepomuk-KDE components are developed for the KDE4 platform the
first step is to setup a complete running KDE4 session.

B.1.1 Running a KDE4 session

As of this writing, KDE4 is still in an early stage of development and, thus,
unstable. It is recommended to create an entirely new user to run the KDE4
session. Let kde4dev be a newly created user account that will be used for all
KDE4 related steps.

Environment Setup Login as user kde4dev and setup some environment
variables (the best way is to put them in a script that is run at login time, for
example ~/.bashrc)

export QTDIR=$HOME/qt4
export PATH=$QTDIR/bin:$PATH
export LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH
export PKG_CONFIG_PATH=$QTDIR/lib:$PKG_CONFIG_PATH

export KDEDIR=$HOME/kde4/inst
export PATH=$KDEDIR/bin:$PATH
export LD_LIBRARY_PATH=$KDEDIR/lib:$LD_LIBRARY_PATH
export QT_PLUGIN_PATH=$KDEDIR/lib/kde4/plugins
export KDEDIRS=$KDEDIR

unset XDG_DATA_DIRS
set it, to avoid seeing kde3 files from /usr
export XDG_DATA_DIRS=$KDEDIR/share
unset XDG_CONFIG_DIRS

export KDEHOME=$HOME/.kde4
export KDETMP=/tmp/$USER-kde4
mkdir -p $KDETMP
export KDEVARTMP=/var/tmp/$USER-kde4

function cmakekde { cmake -DCMAKE_INSTALL_PREFIX=$HOME/kde4/inst \
-DCMAKE_BUILD_TYPE=debugfull $@
}

export PS1="kde4 - $PS1"

Build QT 4.2 Retrieve the current QT4 source code from the KDE subversion
trunk and build it (no installation necessary).

svn co svn://anonsvn.kde.org/home/kde/trunk/qt-copy ~/qt4
cd ~/qt4
./apply_patches
./configure -qt-gif -no-exceptions -debug -qdbus -opengl -fast -prefix \$QTDIR
make sub-src sub-tools

Build Kdelibs 4 Retrieve the current kdelibs 4 source code from the KDE
subversion trunk and install it.

svn co svn://anonsvn.kde.org/home/kde/trunk/KDE/kdelibs ~/kde4/src/kdelibs
mkdir -p ~/kde4/build/kdelibs
cd ~/kde4/build/kdelibs
cmakekde ../src/kdelibs
make install

Deliverable D7.2 Version 1.1 27

Nepomuk 08.01.2007

Build Kdebase 4 Retrieve the current kdebase 4 source code from the KDE
subversion trunk and install it.

svn co svn://anonsvn.kde.org/home/kde/trunk/KDE/kdebase ~/kde4/src/kdebase
mkdir -p ~/kde4/build/kdebase
cd ~/kde4/build/kdebase
cmakekde ../src/kdebase
make install

Running KDE 4 in an XNest session It is best to run a complete KDE 4
session. Since it is highly unstable this can be done using Xnest.
As the normal user running the current X-Session start a new Xnest instance:
Xnest :1

Then from the kde4dev user account start the KDE4 session:

export DISPLAY=:1
startkde

Now KDE4 starts up in Xnest and can be fully used. In order to actually test
the Nepomuk-KDE components follow the steps in the next section before
starting KDE4.

B.1.2 Installation of Nepomuk-KDE

Once KDE4 is properly setup the actual Nepomuk-KDE components and their
dependencies can be installed.

Installation of Soprano/QRDF Soprano is a QT4 wrapper library around the
Redland RDF framework.

svn co svn://anonsvn.kde.org/home/kde/trunk/playground/base/qrdf ~/kde4/src/qrdf
mkdir -p ~/kde4/build/qrdf
cd ~/kde4/build/qrdf
cmakekde ../src/qrdf
make install

Installation of Strigi Strigi is a meta data indexer and desktop search en-
gine which is supported by Nepomuk-KDE through a KMetaData plug-in (see
section 4.4).

svn co svn://anonsvn.kde.org/home/kde/trunk/playground/base/strigi ~/kde4/src/strigi
mkdir -p ~/kde4/build/strigi
cd ~/kde4/build/strigi
cmakekde ../src/strigi
make install

Installation of the Nepomuk-KDE components The following steps install
all Nepomuk-KDE components in the KDE4 setup. This includes the backbone
with the core services, KMetaData, and the example applications.

svn co svn://anonsvn.kde.org/home/kde/trunk/playground/base/nepomuk-kde ~/kde4/src/nepomuk-kde
mkdir -p ~/kde4/build/nepomuk-kde
cd ~/kde4/build/nepomuk-kde
cmakekde ../src/nepomuk-kde
make install

B.2 Tagging a File

Section 4.5 shows how the simple tagger can be used to tag a file from within
the Konqueror. Just use the context menu and choose “Tag file...”. In the
presented GUI new tags can be created and assigned.

Deliverable D7.2 Version 1.1 28

Nepomuk 08.01.2007

B.3 Searching for Tagged Files

Strigi provides a very simplistic testing GUI (real GUI applications are not
available for KDE4 at the moment of this writing). It can be started as
strigiclient.
The Strigi client allows full control over the Strigi system. First the Strigi
daemon has to be started by clicking the appropriate button. Then the folders
to index (i.e. the folders that contain the files tagged earlier) have to be
selected and then the indexing of the files has to be started. Once the Strigi
daemon is idle again, it is possible to search for files using the information set
via KMetaData before. By inserting tag:foo into the search bar all files tagged
with tag foo are shown53

53Strigi does not search all possible meta data fields yet. Thus it is necessary to prefix the
search term with tag:.

Deliverable D7.2 Version 1.1 29

Nepomuk 08.01.2007

C Programming with KNepClient

A full reference API of KNepClient can be found on the Nepomuk-KDE wiki54

or in the sources themselves.

C.1 Writing a Nepomuk-KDE client

A KNep client is an application, plug-in, or piece of code that uses Nepomuk
services to perform certain tasks (but does not publish services itself). Writing
a KNep client is quite easy. One first has to create an instance of Registry55

which will then automatically connect to the local Service Registry to retrieve
the list of available Nepomuk services.

Nepomuk::Backbone::Registry* reg = new Nepomuk::Backbone::Registry(someQOject);

To actually use a service, one has to know the service type URL56. As an
example the RDF storage triple service as defined by Nepomuk has the type
URL http://nepomuk.semanticdesktop.org/services/storage/rdf/Triple.Thus, to get a triple
service one simply asks the Registry to retrieve a generic Service object:

QString typeUrl = "http://nepomuk.semanticdesktop.org/services/storage/rdf/Triple";
Service* tripleService = reg->discoverServiceByType(typeUrl);

Service provides a generic interface via the Service::methodCall method.
In theory one could do all communication with the service through this simple
interface. But since that would be way to complicated (one had to know the
exact syntax of the service’s API) KNep provides ServiceWrapper classes for
the most common service types.
In the case of the triple service, one can simply create an instance of TripleService
as a wrapper around the Service object:

Nepomuk::Backbone::Services::TripleService tripleServiceWrapper(tripleService);

Now the triple service can easily be used as if it were a local object.

C.2 Writing and Publishing a Nepomuk Service

Writing a Nepomuk-KDE service that provides a certain service type is very
easy57. In order to create and publish a service in the local Nepomuk system
one has to create an implementation of one of the ServicePublisher sub-
classes. For each service type there exists a related ServicePublisher subclass
which defines the methods to implement in an abstract interface.
Again the example will be based on the RDF triple service. To create such a ser-
vice a new class has to implemented which is derived from TripleServicePublisher.

class MyTripleService : public Nepomuk::Backbone::Services::TripleServicePublisher
{

Q_OBJECT

54http://nepomuk-kde.semanticdesktop.org/xwiki/documentation/index.html
55The Registry class is intended to be used as a singleton and might later be changed to

enforce that usage.
56In the future service type handling will be simplified by type URL mapping and the introduc-

tion of type abbreviations. In addition Nepomuk::Backbone::Registry already has convenience
methods to access the core Nepomuk services without knowing the service type URI.

57Creating a new service type that is not already part of KNepClient is a little more work at the
moment. In the future creating service types should be handled by a tool chain that parses WSDL
service description files within the KNepClient framework. For now, however, this has to be done
manually. The steps to perform are not documented here and the reader is encouraged to contact
the Nepomuk-KDE development team for help.

Deliverable D7.2 Version 1.1 30

Nepomuk 08.01.2007

public:
MyTripleService(const QString& uri);

public Q_SLOTS:
int addStatement(const QString& graphId, const RDF::Statement& statement);
int removeStatement(const QString& graphId, const RDF::Statement& statement);

[...]
};

To actually register the new service implementation with the local Nepomuk
system, an instance of Registry is necessary. Then registering the new ser-
vice just takes single call to Registry::registerService:

Nepomuk::Backbone::Registry* reg = new Nepomuk::Backbone::Registry(someQOject);
reg.registerService(new MyTripleservicePublisher());

From that point on Nepomuk clients can see and use the new service.

Deliverable D7.2 Version 1.1 31

Nepomuk 08.01.2007

D Programming with KMetaData

A complete API reference documentation of KMetaData can be found in the
sources themselves. They can simply be generated via doxygen58:

doxygen kmetadata/Doxyfile

This will create the sub-folder docs which in turn contains the API reference
in the sub-folder html.
In general there are two ways of using KMetaData.

• The preferred way: use the Resource subclasses as generated from The
Nepomuk Desktop Ontology This is also the much simpler way since
KMetaData takes care of all type casting and list handling automatically.

• Using Nepomuk::KMetaData::Resource directly. This is much harder
since in this case the type names (i.e. their URIs as defined in The
Nepomuk Desktop Ontology) have to be known. On the other hand it
allows to use additional resource types not defined in the ontology and
handle resources without knowing their type.

Since all resource classes are derived from Resource and only add additional
methods both ways can be used interchangeably. Resource objects (and thus
also all objects of classes derived from Resource) with the same URI share
their data. Thus, if one is changed the other one is, too.

D.1 Using Resource Subclasses

Using Resource subclasses directly is very simple. All that is necessary to
handle a resource is to know its type and its URI (the URI can vary a lot
between resource types; The simplest example is certainly a local file: the
URI is the path to the file).
To access or create meta data for a resource one simply creates an instance
of the corresponding class and passes the resource URI to its constructor.
In case of a file this would look as follows.
Nepomuk::KMetaData::File f("/home/foo/bar.txt");

Now meta data can be read and set via the methods provided by File such
as setAnnotation.
Each resource class also provides a static method which returns all existing
instances of this type. This includes instances in the store as well as locally
non-synced objects.

D.2 Using Resource Directly

Using the Nepomuk::KMetaData::Resource class directly forces one to learn a
little more about the internals of KMetaData. Resource provides four methods
to handle the properties of a resource (reminder: all Resource subclasses as
generated from The Nepomuk Desktop Ontology are based one these meth-
ods):

• Resource::getProperty

• Resource::setProperty

58http://www.stack.nl/ dimitri/doxygen/

Deliverable D7.2 Version 1.1 32

Nepomuk 08.01.2007

• Resource::removeProperty

• Resource::allProperties

Each property’s value is represented by a Variant object which can contain
another Resource or a literal (string, int, ...) or even a list of the former
two. Other than with the Resource subclasses no automatic type conversion
is performed.
In case of a property that can have multiple values (cardinality greater than
1) Resource::setProperty has to be called with a list to set more than one
(the Resource subclasses simplify this by adding add methods in addition to
the set method) and Resource::getProperty will also return a list (in both
cases encapsulated in a Variant object).
When creating a Resource object there are two cases that are dealt with
differently:

1. The resource does not exist yet, i.e. no information about it is stored.
In this case KMetaData does not know the type of the resource and will
fall back to http://www.w3.org/2000/01/rdf-schema#Resource.

2. If the resource already exists the type may be empty. It will then be read
from the local meta data store (where it was saved before by KMetaData
automatically).

As a rule of thumb one should always define the type when creating meta
data and leave it empty when reading meta data.
When using the plain Nepomuk::KMetaData::Resource class one is completely
free to choose the resource URIs, the type URIs, and the property URIs.
However, to preserve compatibility with other applications one is encouraged
to stick to those define in The Nepomuk Desktop Ontology.

D.3 KMetaData Resource Manager

KMetaData is designed so the user (the developer of a client application) does
not have to care about loading or saving the data. Unless auto syncing is dis-
abled via ResourceManager::setAutoSync meta data is automatically synced
with the local Nepomuk meta data store. (Currently the auto-sync feature is
only partially implemented. Data will be synced once the last instance of a
resource is deleted.)
Although in normal operation it is sufficient to only work with Resource and
its subclasses errors might occur. This is where the ResourceManager comes
in: it provides the init method which can be called manually (the resource
manager will be initialized automatically anyway) to check if the initializa-
tion was successful and KMetaData can be used. In addition it provides the
ResourceManager::error signal which is emitted whenever an error occurs.
Errors include failed syncing or loading of meta data.

Deliverable D7.2 Version 1.1 33

Nepomuk 08.01.2007

E Examples

E.1 KMetaData File Class

See below for an example of a class generated by KMetaData representing
a type from the Nepomuk Desktop Ontology. File extends over Thing by
introducing one more property location. Since location is a literal string value
it is automatically casted in the method calls (as compared to the usage of
Variant in the generic setProperty and getProperty methods. In addition each
generated class contains a static method to retrieve all defined resources of
this type.

class File : public Thing
{
public:

File();
File(const File&);
File(const QString& uri);
~File();

File& operator=(const File&);

QString getLocation() const;

void setLocation(const QString& value);

static QList<File> allFiles();

protected:
File(const QString& uri, const QString& type);

};

E.2 Resource Annotation

Commenting a file with an annotation is as simple as

Nepomuk::KMetaData::File f("/home/foo/bar.txt");
f.setAnnotation("This is quite a nice file and I like annotating it.");

E.3 Resource Tagging

Other than an annotation a tag is not a literal value but tags are also resources
with a single property: their name which is the one presented to the user.
Tagging a resource consists of two steps. First a new tag has to be created;
then this tag has to be assigned to the resource. Since a tag is an artificial
resource it has to have a unique URI. At the time of this writing no automatic
unique URI generation has been implemented yet so the developer creating
the tags has to come up with some arbitrary tag URI manually.

Nepomuk::KMetaData::Tag tag("http://sometaguri");
tag.setName("Nepomuk");

Nepomuk::KMetaData::File f(``/home/foo/bar.txt'');
f.addTag(tag);

This will create a new tag named Nepomuk and assign this tag to the file
/home/foo/bar.txt.

E.4 GUI Interaction

KMetaData::Ontology provides information about the Nepomuk Desktop On-
tology such as human readable representations of types and properties. This

Deliverable D7.2 Version 1.1 34

Nepomuk 08.01.2007

allows to simply present all properties defined for a certain resource in a GUI
element.

Nepomuk::KMetaData::Ontology* ont = Nepomuk::KMetaData::ResourceManager::instance()->ontology();
Nepomuk::KMetaData::Resource f("/home/foo/bar.txt");
QHash<QString, Variant> properties = f.allProperties();
QHashIterator<QString, Variant> it(properties);
while(it.hasNext()) {

it.next();
kdDebug() << ont->propertyName(it.key()) << ": " << it.value().toString() << endl;

}

Deliverable D7.2 Version 1.1 35

Nepomuk 08.01.2007

References

[1] Malte Kiesel Max Volkel Heiko Haller Mikhail Sogrin Par Lannero Brian Davis
Mikhail Kotelnikov, Alexander Polonsky. Nepomuk deliverable d1.1 - inter-
active semantic wikis. Technical report, Cognium Systems, DFKI, FZI, IBM,
KTH, NUIG, 2006.

[2] Enrico Minack and Leo Sauermann. Nepomuk deliverable d2.1 - adapters,
extractors, and knowledge structure services. Technical report, L3S, DFKI,
2006.

[3] Leo Sauermann Tudor Groza and Paul-Alexandru Chirita. Nepomuk deliver-
able d6.1 - first version backbone and connector infrastructure. Technical
report, NUIG, DFKI and L3S, 2006.

[4] Renault John Vasilios Darlagiannis, Roman Schmidt and Ekaterini Ioannou.
Nepomuk deliverable d4.1 - distributed search system - basic infrastruc-
ture. Technical report, EPFL and L3S, 2006.

[5] Scott Wheeler. Tenor: A contextual linkage framework for kde. Tech-
nical report, April 2005. http://websvn.kde.org/*checkout*/trunk/

playground/base/tenor/docs/tenor-architecture.pdf?rev=475778.

Deliverable D7.2 Version 1.1 36

http://websvn.kde.org/*checkout*/trunk/playground/base/tenor/docs/tenor-architecture.pdf?rev=475778
http://websvn.kde.org/*checkout*/trunk/playground/base/tenor/docs/tenor-architecture.pdf?rev=475778

	Introduction
	KDE State Of The Art
	A Little KDE History
	KDE - Personal Information Management
	Kontact
	Kopete
	Basket - Advanced Note Management

	KDE Semantic Features
	Kontact
	Other Applications
	Kerry - Beagle Desktop Search in KDE
	Strigi - Fast Desktop Search
	Tenor

	KDE Social Features
	Decibel
	File Sharing
	Social Networks Visualiser

	KDE Architecture
	The kdelibs
	D-Bus Architecture

	KDE Community Involvement
	Nepomuk-KDE Presentation At aKademy 2006
	The Nepomuk-KDE Web Portal
	Integration

	Nepomuk-KDE Prototype
	The Nepomuk-KDE Middleware
	KMetaData - Embedding Nepomuk Metadata into KDE
	The Core Services
	RDF Storage
	Resource Identification

	Local Search Service
	Annotation and Tagging
	Miscellaneous Tool Support
	KGense
	KRDFExplorer

	NEPOMUK-KDE Next Steps
	KDE Development
	Akonadi

	Nepomuk-KDE Development
	Nepomuk Components

	Integration of Nepomuk-KDE into Mandriva Linux
	Community Involvement

	Conclusion
	Nepomuk Desktop Ontology
	Testing the Nepomuk-KDE components
	Preparations
	Running a KDE4 session
	Installation of Nepomuk-KDE

	Tagging a File
	Searching for Tagged Files

	Programming with KNepClient
	Writing a Nepomuk-KDE client
	Writing and Publishing a Nepomuk Service

	Programming with KMetaData
	Using Resource Subclasses
	Using Resource Directly
	KMetaData Resource Manager

	Examples
	KMetaData File Class
	Resource Annotation
	Resource Tagging
	GUI Interaction

	References

