

Task Management Model
Deliverable D3.1

Version 1.0
29.01.2007
Dissemination level: PU

Nature Report
Due date 31.12.2006
Lead contractor SAP AG
Start date of project 01.01.2006
Duration 36 months

Integrated Project

Priority 2.4.7

Semantic based knowledge systems

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 ii

Authors

Olaf Grebner, SAP
Ernie Ong, SAP
Uwe Riss, SAP
Marko Brunzel, DFKI
Ansgar Bernardi, DFKI
Thomas Roth-Berghofer, DFKI

Mentors

Dimitris Apostolou, ICCS
Alexander Polonsky, COG

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Erwin-Schroedinger-Strasse (Building 57)
D 67663 Kaiserslautern
Germany
Email: bernardi@dfki.uni-kl.de, phone: +49 631 205 3582, fax: +49 631 205 4910

Partners

DEUTSCHES FORSCHUNGSZENTRUM FUER KUENSTLICHE INTELLIGENZ GMBH (DFKI)
IBM IRELAND PRODUCT DISTRIBUTION LIMITED (IBM)
SAP AG (SAP)
HEWLETT PACKARD GALWAY LTD (HPGL)
THALES S.A. (TRT)
PRC GROUP - THE MANAGEMENT HOUSE S.A. (PRC)
EDGE-IT S.A.R.L (EDG)
COGNIUM SYSTEMS S.A. (COG)
NATIONAL UNIVERSITY OF IRELAND, GALWAY (NTUA)
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE (FZI)
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER (L3S)
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS (ICCS)
KUNGLIGA TEKNISKA HOEGSKOLAN (KTH)
UNIVERSITA DELLA SVIZZERA ITALIANA (USI)
IRION MANAGEMENT CONSULTING GMBH (IMC)

Copyright: NEPOMUK Consortium 2006
Copyright on template: Irion Management Consulting GmbH 2006

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 iii

Versions

Version Date Reason

0.1 05.10.2006 First draft by Olaf Grebner

0.2 15.12.2006 Included several sections, e.g. State-of-the-art, Task
operations, …

0.3 21.12.2006 Pre-Review-ready version for the mentors

0.4 08.01.2007 Integrated Nepomuk document template 1.4

0.9 16.01.2007 Review-ready version for the mentors

1.0 29.01.2007 Final Version

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for NEPOMUK partners

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 iv

Executive Summary

The Social Semantic Desktop as developed in Nepomuk shall realize a
comprehensive work environment for the knowledge worker.

This document describes the Task Management Model, which provides
the fundamental representation for a structured modelling and handling
of personal workload and individual activities. Motivated by our
understanding of the semantic desktop as a predominantly personal tool,
the task management model has to support a variety of usage scenarios,
ranging from the personal ad-hoc annotation of an arbitrary information
item as being somehow tied to an activity to-be-performed to the highly
formalized representation of tasks as data elements within a distributed
collaborative workflow application. This wide range of scenarios results in
some guiding principles for the further development, which specify the
expected benefits and the constraints to be considered, both from the
individual and from the organisation’s point of view.

Task modelling has been investigated for various purposes and from
different viewpoints. Main approaches include the individual activity
modelling, the coordination theory focussing on multiple actors, the
unified activity management which generically represents human
collaborative activities, and individual task and to-do list managers. A
comprehensive review of the state of the art describes and discusses
these approaches and coordinates with the requirements identified within
the Nepomuk case studies.

Nepomuk’s task management shall support a variety of operations on
tasks. Personal aspects – annotating information as task-related,
handling to-do lists, managing deadlines, structuring information
resources etc. – are combined with and extended by organizational and
collaboration aspects and evolved towards knowledge management
aspects. The conceptual task management model describes the principle
elements (concepts and relations) and functionalities considered by
Nepomuk.

Finally, the Nepomuk task management model is defined as a set of
concept definitions. Used as a data model (or domain ontology), this
model offers the various data types and their properties which are
needed to realize the intended functionalities. In accordance with the
broad range of intended applications, most properties defined so far are
considered optional, thus leaving room for very lightweight personal
applications. On the other hand, further details and increased formality
can always be realized by introducing new subclasses to the objects
defined here.

In summary, the Nepomuk task management model offers the formal
specification of the concepts and relations, which will allow to handle all
data necessary to support task-related operations within the social
semantic desktop, both in the personal as well as in interconnected and
organizational settings.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 v

Table of contents

1. Introduction .. 1
2. Guiding Principles ... 4
3. State of the art analysis - task modelling ... 6

3.1. Task model methodologies ... 6
3.1.1. Activity Theory.. 6
3.1.2. Coordination theory (CT) ... 14
3.1.3. Object-Oriented Activity Support 16

3.2. Exemplary Task Model Role Models .. 18
3.2.1. Unified Activity Management (UAM) 19
3.2.2. Task Manager (1993) .. 21
3.2.3. Further selected aspects ... 26

4. Task Management Model Requirements – Scoping 30
4.1. Requirements from the Nepomuk case studies 30

4.1.1. Task Management functional requirements in WP8000 30
4.1.2. Task Management functional requirements in WP9000 31
4.1.3. Task Management functional requirements in WP10000 .. 32
4.1.4. Task Management functional requirements in WP11000 .. 33

4.2. Consolidated task management requirements 34
5. Conceptual Task Management Model ... 38

5.1. Basic Task Concepts.. 38
5.1.1. Personal Task Management .. 38
5.1.2. Activity / Action ... 39
5.1.3. Task .. 40
5.1.4. Task Relations.. 43
5.1.5. Task Patterns ... 45
5.1.6. Task Roles... 47
5.1.7. Task States – Status Information on Tasks...................... 50

5.2. Task Functions .. 52
5.2.1. Core Functions ... 52
5.2.2. Task Pattern Handling ... 56
5.2.3. Time Management .. 57
5.2.4. Co-Tasks ... 58

5.3. Task Concept Requirements Matrix ... 58
5.4. Security... 59

6. Task Management Model .. 60
6.1. Design Principle: Data Model vs. Ontology 60
6.2. The Nepomuk TMO in the Context of Nepomuk Ontologies........ 60

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 vi

6.3. The Nepomuk Task Model Ontology .. 62
6.3.1. Task Model .. 62
6.3.2. Task Transmission and Access Rights............................ 73
6.3.3. Task operations .. 75
6.3.4. Summary of Nepomuk Task... 76

6.4. Task Patterns .. 77
6.4.1. Task and Pattern Repository (TPR) 78
6.4.2. Task Pattern Model and Lifecycle 78

7. Conclusion ... 81
8. References... 82

8.1. State of the art analysis - task modelling 82
8.2. Task Management Model Requirements – Scoping 84
8.3. Conceptual Task Management Model 85
8.4. Task Management Model.. 85

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 1

1. Introduction

Nepomuk realizes the Social Semantic Desktop, which shall transform the
computer into an effective tool for personal knowledge work. Central
elements of personal knowledge work comprise information
management, knowledge articulation, and sharing and exchange.

Besides these information-oriented aspects, the effective management of
the personal workload is a fundamental challenge for any knowledge
worker: Keeping an overview of the things to be done, structuring the
daily activities as well as the long-term work packages of projects the
worker is responsible for, observing deadlines, manage team
cooperation, and report on timely achievements. These are some
examples of the challenges any knowledge worker faces within the
complex realm of multiple, parallel projects and activities which are
typical for today’s knowledge work. On the other hand, making a
knowledge worker’s tasks explicit provides a powerful tool for effective
information structuring and handling.

Nepomuk takes care of this challenge by developing support for personal
task management. Nepomuk Personal Task Management shall provide
the necessary technical and methodological means to support the explicit
definition, handling, and control of tasks within the personal knowledge
work, both solitary or within team structures. The Nepomuk Personal
Task Management Model, described in this document, shall facilitate the
representation of all data necessary to represent knowledge worker’s
activities and to realize the support functionalities envisioned. This
comprises

• the definition of a basic framework for task modelling, which
allows for a sufficiently rich representation of tasks, taking into
account the wide variety of possible interpretations; and

• the identification of task-related operations which are to be
supported by the system

Building the representation formalisms of the Personal Task Management
Model, and designing the intended support functionalities, takes into
account a number of sources for requirements:

• Tools for task- or activity-management abound, ranging from ‘to-
do-list’ –like tools on the personal computer up to organization-
wide workflow management and process modelling systems

• A plethora of scientific literature has tackled important aspects of
activity modelling and task management

• The case studies investigated within the Nepomuk project give
insights into the domain-specific (and general) needs of
knowledge workers in practice. WP10000 – Organizational
Knowledge Management Case Study – in particular emphasizes
the need for task management and work process support in a
distributed, knowledge-intensive work setting within a large
organization.

The common view on the various requirements and application scenarios
which is taken by Nepomuk is the focus on the individual who manages the
own tasks within the personal workspace. This personal task management is
embedded in the conceptual and organizational work environment. The task-
related operations need to cover the different scopes of collaboration and

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 2

sharing within this realm. Accordingly, the task representation formalism is
tailored to accommodate these operations. The different scopes are

• the solitary work scenario: An individual knowledge worker
follows some personal goal without any direct relation to the
outside world. A typical task representation here is a simple to-do
list (although all kinds of more structured representations and
more detailed planning are possible). Operations comprise the
initial naming of a task, its refinement even during the work,
scheduling and reminding about deadlines, and the final note
that some task has been completed. Extended functionalities
may be oriented towards detailed log keeping, time recording, or
other types of work documentation. Besides the usual
advantages of calendar support, deadline reminder, personal
time management, and work records, this scenario already offers
the means to realize task-oriented and context-sensitive
information management support.

• the team cooperation scenario: The individual is embedded into a
team of collaborating persons. Within this team, tasks can be
delegated or transferred, information is shared, and notes about
the completion of a task are transmitted to other team members.
With increasing size of teams and detailed definition of
competencies and roles, this scenario expands to

• the organization scenario: Individuals are now embedded in well-
established organizational structures with defined roles and
formal responsibilities. Consequently, task-oriented operations
take into account hierarchies of control, direction and delegation
rights, and reporting obligations. Individual ad-hoc modelling of
tasks is extended by formal pre-defined standard operating
procedures, and roles are a new target of task transmission:
Instead of directly addressing known individuals, a task might be
given to an organizational entity or a role which then decides
autonomously about the person who will work on the task.

Besides these varying degrees of responsibility, collaboration, control,
and sharing, the modelling of tasks creates a data representation of work
which can be transmitted over time and across individuals. From this
viewpoint, personal task management unites future-oriented planning,
present work execution, and the documentation of past activities.
Furthermore, the task models can be stored, retrieved, and re-used, thus
allowing for the transfer of experiences, the development of abstractions
and generalizations, and ultimately contributing to the management of
the know-how contained within the task descriptions.

Figure 1.1 shows an overview of the personal task management in these
dimensions: In reality, work is planned (future), done (present) or a
historical thing of the past. Personal task management supports these
aspects by a variety of (future-oriented) planning and scheduling
activities. Present work execution is supported by services for information
handling, reminding, delegation and control. The preservation of task
histories and work process trails results in case-specific and/or abstracted
and generalized know-how which can be re-used at whim for new
planning.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 3

Task Pattern

Cases (process trail)

Task performed
(History) Current Work Work (Task) planned

time
FuturePresentPast

Task documentation
(Retained models)

Active Task
+ attached information

Personal Task Models
Personal Worklist
Personal Scheduling
Personal resource Planning

describe
remind,
delegate,
control

Experience &
Knowledge
Management
level

Personal Task
Management
level

Real world
(activity) level

store retrieve retrieve
+ adapt manually

retrieve
+ combine
+ refine

abstract,
generalize

Figure 1.1: Dimensions of Personal Task Management

The representation formalisms and operations defined in this deliverable
are oriented at these scenarios and allow to cover all possible
instantiations.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 4

2. Guiding Principles

Work package 3000 (WP3000) aims at realizing an integrated task
management support for the individual knowledge worker in a
networked environment. This means that it supports collaboration of the
knowledge workers in the network with respect to related or dependent
tasks. The leading principles of this task management can be described
as follows:

 Provide individual benefits by suitable services: The
Nepomuk task management provides more direct benefits to the
users than it causes additional costs for them. Behind this
requirement we find the insight that knowledge workers are
rather delicate in the choice of tools that they use. Tools that do
not clearly provide advantages will be rejected even if they might
be preferable from an organisational point of view;

 Provide social benefits by collaborative work: The
Nepomuk task management is to establish social benefits derived
from individual experience based on task execution. Here we
face the shared database problem: knowledge workers must
provide information to others without a direct benefit for
themselves. Therefore, to achieve this aim, the previous principle
becomes especially important.

 Provide organisational benefits using others’ work
experience: This is related to the previous principle. However,
whereas the social benefit aim at an indirect individual benefit,
i.e., the individual user profits from the experience of others,
organisational benefit might only indirectly lead to the knowledge
workers benefit by making the organisation for which they work
more efficient.

 Ensure knowledge workers’ autonomy: The Nepomuk task
management must respect the autonomy of knowledge workers.
This means that the system must support knowledge workers in
an unobtrusive way, providing guidance instead of prescription.
Also here the question of motivating users to work with the task
management comes to the fore. Moreover, the aspect of
autonomy is closely related to the demand for flexibility of
knowledge work processes;

 Respect knowledge workers’ privacy: The Nepomuk task
management must respect the privacy of knowledge workers by
protected the individual work sphere. It must keep the balance
between supporting the exchange of information between users
and protection of those data that the users want to keep for
themselves. Also this principle is to be seen as a necessary
precondition to foster acceptance of the task management by the
knowledge workers.

These principles are a precondition for the entire design of the task
management. To realize the principle of individual benefit we realize an
individual task management that is embedded in the user’s personal
desktop and has to tackle

• ad-hoc task planning and flexible changes (autonomy);

• collaborative work on task (social benefit);

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 5

• knowledge-intensive tasks with a huge amount of personal as
well as group information objects (individual benefit), and

• integration into organizational processes (organisational benefit).

The functionality to be implemented concentrates on the structuring and
management of personal work activities and collaborative aspects. On
the one hand, the task management will be designed to handle the
individual organisational needs of users, enabling a seamless transition
between regularly used tools like email and notes and the personal tasks.
On the other hand even personal task are related among each other
resulting in a net of interrelated tasks. These nets must be organized and
made transparent. Finally, the task management is integrated in the
entire social semantic desktop and the architecture of the system will be
adapted to this fact.

Moreover, the principle of autonomy suggests a task management
system that is characterised by the sovereignty of knowledge workers
over the execution of their tasks. Even if the a task is to be executed to
fulfil the demands of another party, the task owners can freely decide in
which way they want to execute their tasks. This requires the largest
decoupling between tasks possible, reducing the mutual visibility
between tasks and derived tasks to a degree that only allows for the
natural interests of both parties.

On the other hand there are tasks that cannot be performed by a single
person due to their complexity and requirement of various expertises. In
this case the separation must be broken to enable a seamless
cooperation of the included co-workers. Here the social benefit exceeds
the desire for autonomy. This refers to the fact that collaborative team
work is a common phenomenon today. In contrast to the individual case,
such cooperation requires that information between the co-workers is as
transparent as possible, i.e., that a common information space is
established. Nevertheless, this shared information space is restricted to
the well defined group of co-workers while other users are treated in a
way that protects group privacy and autonomy. In this sense a task
should be clearly related to the encapsulated activity of an individual task
owner or a collaborating group.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 6

3. State of the art analysis - task modelling

This section presents the state-of-the-art in task modelling. The goal is to
provide a solid knowledge base for the modelling of tasks and task
patterns as they presented in sections 5 and 6.

This state-of-the-art analysis includes a literature review of theories, on
which a task management can be founded and which provide promising
methodologies, as well as a review of relevant existing task models as
these have been realized in different prototypes.

3.1. Task model methodologies

This section presents so-called task model methodologies. These
methodologies describe the aspects to be considered in the development
of the task model, i.e., it drives the modelling of tasks from a specific,
strategic perspective. We refer to them as ‘what-concepts’ since they
point at the problems and issues that task management has to tackle.

Regarding the modelling of tasks, there exist several methodologies,
each having a predominant concept of abstraction, e.g. activity-centricity,
user-centricity or process-centricity. All of these methodologies have a
long history of successful applications and therefore provide the
promising means for the development of a task management model.

Thus, we turn our attention to those aspects of these methodologies,
which are relevant for personal task management. They help us
understand the problems that stand behind the handling of tasks. First,
Activity Theory (AT) focuses on the determination of activity between
subject and object. Second, Coordination Theory (CT) highlights the
management of dependencies between activities. Finally, Object-Oriented
Activity Support presents an activity-centred perspective distinguishing
activity types and instances.

3.1.1. Activity Theory

The principles of Activity Theory (AT) have been developed by Leontiev
based on Vygotsky’s cultural-historical psychology. Vygotsky’s work in the
1920s aimed at understanding the interdependency of mind and society,
resolving dichotomies such as those of mind and body, thought and
action, or individual and society. His theory is centred on the idea that
psychological processes are determined by the mediators which can be
material or mental.

In particular, AT states that the relation between subject and object is
determined by activities (Leontiev, 1978). The notion of activity is not
restricted to human activities but can also be understood in a more
general sense. It only assumes that the subject refers to an object in the
world in a purposeful interaction. This interaction leads to a development
of both, the subject as well as the object. While the object might be
modified during the interaction leading to a state described as outcome,
also the subject can undergo alterations, e.g., acquire certain capabilities,
from the process. The asymmetry between subjects and objects results
from the active role of the subject in the interaction caused by the
subject’s respective needs.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 7

The interaction of subject and object is mostly not direct but mediated by
mediating artefacts or instruments. These can encompass tools such as
hammers as well as more symbolic tools such as pictures or language.
Usually this relation is described in a triangular form of activity systems
as depicted in Figure 3.1:

Figure 3.1: Engagement of subject toward objective mediated by instruments.

Regarding the instruments the distinction between physical and symbolic
artefacts makes a decisive difference which becomes apparent in the
phenomenon of internalization, e.g., frequently subjects stopped to
use (external) symbolic artefacts due to the fact that they develop a
specific routine in using them (Vygotsky, 1983). However, also the
contrary process of externalization occurs, e.g., in cases of trouble
shooting, and reflection. A central statement of AT is that activity always
occurs in context. Consequently, if we examine human activity we have
to include the motives, goals, and intentions of actors and which
artefacts are involved in it.

Figure 3.2: Hierarchical conception of activity.

An activity can be described as a three layered hierarchy as depicted in
Figure 3.2 (Leontiev, 1978). In AT every interaction of a subject with the
world can be described as an activity if it is motivated by a particular
need of the subject. The motive stimulates the subject to perform the
respective activity, even if often in an unconscious way. The motive can
be represented by an object the subject strives for. However, there are
cases in which the motive and the concrete object of an activity differ. In
this case, we distinguish activity and action where the former is related
to the motive while the latter is related to the object (Leontiev, 1981).
For example, the goal of my action could be to write a book while my
motive could be to acquire reputation by the publication of this book.
Finally, actions can consist of operations. These are routine processes of
which the goal might not be aware of anymore. In the sphere of
knowledge, the distinction between actions and operation corresponds to
the difference between explicit and implicit knowledge as described by
Polanyi (1966).

Blackler (1995) states that knowledge is closely related to corresponding
activity systems. He comprises the insights provided by AT regarding
knowledge as follows:

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 8

1. Knowledge is mediated, e.g., by language, tools, symbols etc.

2. Knowledge is situated, i.e., depending on the context

3. Knowledge is provisional, i.e., it is constantly evolving in the
context of its application

4. Knowledge is pragmatic, i.e., intentional and object-oriented

These are partially derived from respective categories for activity
compiled by Engeström (1987) and thus reflect the close relation
between knowledge and action.

The triangular description in Figure 3.2 does not yet include the dynamics
that appear in a system of several actors. An adaptation of this kind has
been provided by Engeström (1987) and is depicted in Figure 3.3.

Figure 3.3: Structure of a human activity system.

This figure describes the collective activity of human actors. The
community describes the group of actors the relationship of which is
mediated by a common ground of meaning given by a common praxis
(as formal rules or informal habits). The rules (or praxis) guide the
collaboration of these actors. The relationship between the co-workers
and the object of activity is mediated by the organization of work,
described as division of labour. The co-workers find themselves in the
community both as independent subjects and as object of interaction.
These concepts have been mainly applied to identify requirements for
system design that result from a work situation (Turner et al., 1999).

Referring to Engeström (1987) within this activity system four levels of
contradictions can occur that accompany the change of activities.
Primary contradictions are related to contradictions at singular node,
e.g., the subject that might be driven by different motives. Secondary
contradictions derive from the direct interaction of nodes, e.g.,
between subjects and tools which might not be appropriate to the
subjects’ goal. Contradictions between an activity and its more advanced
form appear as tertiary contradictions. Finally, quaternary
contradictions appear between different activities. The discovery of
these contradictions can help to develop the activity system further, e.g.,
by introduction of improved instruments.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 9

Figure 3.4: Contradictions in a network of human activity systems.

Figure 3.4 describes the primary contradictions for activities related to
abstract knowledge work in analogy to the description given by
Engeström (1987). These contradictions primarily result from the
difference between informal processes and formal standards that are
typical for organisations.

In the following, we want to investigate how AT can be used to derive
requirements for a generic task management. To this end, we investigate
the general role of the constituents in Figure 3.4 for the distribution of
work. We refer to the investigation that has been proposed by Jonassen
and Murphy (1998).

3.1.1.1 Clarification of the Purpose of the Activity System

We start with the division of labour since it concerns the central topic of
the task management. Engeström (1997) pointed out that in contrast to
the origins of collaborative work in families and tribes, in modern working
life the relations between those who distribute the work and those who
finally execute it can be rather broad. It is not even always necessary
that they know each other. In this case, the object that is related to the
division moves into the centre of interest. However, there are also cases
where the community, e.g., the participant in a meeting work closely
together so that their relationship plays a decisive role. In the former
case, we often find a difference between motive and objective while in
the latter case the participants are much more concerned with the
success of the community so that motive and object move together to a
large degree.

Figure 3.5: Autonomous vs. Collaborative Action.

Figure 3.5 shows the principle difference that appears between these two
cases. Accordingly, the task management has to support both kinds of
derived activities appropriately. While in the case of Autonomous
Action the privacy of the actor must be preserved and the outcome

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 10

must be well specified, in the case of Collaborative Action the
communication move into the centre of interest. We will consider this
separation also in the following investigation.

Since we use the task concept in the sense of separable units of work,
we will describe Autonomous Actions by different tasks while
Collaborative Actions will be describes as one task to which several co-
workers contribute. In the first case, we have to establish a formal
communication channel, in the latter case we have to provide a
collaborative working space.

3.1.1.2 Analysis of the Activity System

The analysis of the Activity system concerns the individual components
as described in Figure 3.5 in order to get a clearer picture of their role.
The distinction that we have made in the previous section will reappear
also here in the descriptions of the different components.

3.1.1.2.1 Subjects

The subjects who work with the task management system are users of a
system that work together with other users on tasks. Their motivations
can be quite different and depends on the fact whether they belong to a
organisation such as a company or to a loose network or users who
share a common interest. However, this distinction does not concern the
way how they organize their work. Whether actions are autonomous or
collaborative mainly depends on the character of task and not on the
attitude of the user among each other.

The outcome of an activity can be rather isolated, e.g., if a problem
occurs and the user requires a solution as in the Mandriva case, or they
can be rather structured as in an organisation where several people work
on complex projects that require extensive coordination. The common
footing of these activities is that all participants deliberately work on the
tasks that they face to accomplish them successfully.

Users have different expertise and therefore concentrate on different
aspects of a task or problem to be solved. The goal is to delegate some
piece of work to that user who is expected to provide the best result.
This might not also be the most experienced expert since it is often takes
some time until they can work on a task so that a less experienced user
who can answer earlier is often more appropriate.

3.1.1.2.2 Relevant Communities

The respective communities depend on the network in which the task
management is used. Therefore, they can be rather different. However,
there is always a certain willingness to support each other. The reason
for this can be that the community is formed by a common idea as in the
case of the Linux community or by a common corporate identity as in the
SAP case. This supports the delegation of work, which is generally
necessary, since individual users alone cannot execute complex tasks. In
general, the accomplishment of a task in this network requires the
support of several other users.

Depending on the particular community, the rules can be more formal, as
in the organisational case, or more informal, as in the Linux community

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 11

case. However, since the focus of the task management is knowledge
work the reach of formal structures is rather limited. This means that
most communities are characterised by a joint understanding of the
common goal.

Moreover, the situation is characterised by the fact that the willingness to
cooperate with other users is noticed within the network and a crucial
factor for mutual support. In the organisational case, the management
can relate monetary benefits to the successful accomplishment of tasks.
However, we must regard the role of social recognition as at least equally
important (even in companies).

3.1.1.2.3 Objects

The outcome of an activity in the considered cases is generally an
information object. Partially there are also services related to this
information object, as for example in the case of a journey planning.
There, the recipient does not only get the information about the booked
flight, for example, but the entire flight service is related to this
information.

Concerning the quality of the outcome there are several possibilities. On
the one hand, we have tasks that are delegated. Here the delegating
party expects a certain quality of the object that allows them to continue
with their own activity. Event triggered task mainly arise from a state
that has to be changed to another state, e.g., if a machines breaks and
has to be repaired. The particular community generally knows and
accepts these states. However, there are also conflicts if the respective
expectations are not fulfilled.

The distinction between instrument and object is not always as clear as it
seems. For example, if we take a document on which several authors
jointly work, the finalized document is the object of the action. However,
during the process of writing, the document can also be used as an
instrument to exchange opinions and to find a common understanding.
This double character also appears in task management.

Primarily the task management is an instrument that helps individual
users to execute their tasks. In this case, it is even obstructive if the task
management becomes a goal of its own. The focus should always be
placed on the activity to be performed, since this is predominant motive
of the actor. On the other hand, the recorded task is an object that is to
be used as source of information for other actors. In this sense, the task
becomes an object that is to be worked on carefully in order to provide
valuable information to other actors.

3.1.1.3 Activity Structure

Regarding the difference between autonomous and collaborative actions
there can be a different attitude towards to the collaborating community.
In the former case, the community is more or less resolved in favour of
an ‘objective’ relation between the collaborating parties. This means the
activities including the actors are transformed into the instruments that
help to achieve the goal. In the end, such a relation can be simply
replaced by an automatic service with well-defined input, output and
performance features. The rules that we can relate to such a process
have to be mainly formal.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 12

Turning to collaborative actions the role of the co-workers is better
described as that of a temporal community grounded on common rules
and practice. Here informal aspects play a much more important role.
The joint effort concerning the common work is constantly adjusted and
negotiated. The separation of these activities into different tasks does not
make sense.

Figure 3.6: Task assignments for autonomous and collaborative actions.

As described in Figure 3.6. Autonomous Actions and Collaborative Actions
differ in terms of task assignment. In the former case, every action of a
participating subject is represented by a separate task whereas, in the
latter case, all actions coalesce into one task and the action become
rather similar in character, i.e., their goals are more or less identical.

However, the two types only represent the ends of a spectrum of
possibilities; in reality, there are various hybrids. For example,
autonomous tasks requires a fixed scheme of interaction which might
break down if exceptions occur which require further communication
between the participating parties. On the other hand, also Collaborative
Actions might have facets to which some participants can better
contribute than others. In this case, it might we useful to separate these
aspects and describe them in separate tasks. In particular the type of
task can change over time, e.g., due to exceptions. The task
management must allow for this and provide possibilities to change the
mode of collaboration.

Although the common footing in Collaborative Actions is much more
pronounced than in Autonomous Tasks, even in the latter case there
must be a common understanding on which input and output is expected
and which external constraints regarding the process have to be obeyed.
This means that even in this case there are certain underlying rules on
which the process is based and a community with a common
understanding of what is exchanged.

Ways of proceeding are mainly due to experience of the individual user.
In communities as well as in organizations novices have to find out how
to get their task done. A task management can support the process by
providing appropriate information. This information can help users to
define certain task and delegate them to other users or to find users and
work with them on specific topics or problems.

Concerning the motivation, users are generally driven by multiple goals.
On the one hand, they generally like to help other users as well as
possible. On the other hand, they usually have so many tasks to
accomplish that they have to choose carefully those tasks for which they
have enough time. This also concerns the quality of task outcomes. This
holds not only the in organisational case but also for communities.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 13

3.1.1.4 Tools and Mediators

Currently only email and calendar systems and a small spectrum of
special tools support task handling and give the user an overview of what
is to be done. In this respect, emails mainly concern the communicative
part of task handling, i.e., the delegation of tasks to other users,
although some users also use email systems to store information (cf.
D10.1 2006, Section 2.2.2). A central problem in this respect is that email
systems are mainly designed to support communication between users
but not to track the tasks that are related to this information. Therefore,
emails are often stored to preserve the information resulting from a
status request. Nevertheless, information is often lost or difficult to find.
Relations between emails, even if they belong to connected tasks, are
not sufficiently supported.

Similar problem appear in connection with calendar systems which are
designed to support the user in planning their time but which are not
properly connected to task related communication and information.
Although calendar software support often supports the notifications of
users regarding planned activities there is no support for tasks that are
not assigned to fixed time slots, except for deadlines and reminders.
Nevertheless all tasks require a time planning even if there are no time
slots reserved for them in the calendar. Moreover, the calendar entries
belonging to the same task are not related to that it is difficult to get an
overview of all timeslots assigned to a particular task.

Finally, if we consider the main task tools we find that these mainly
support users in a rather static way so that task lists become
accumulations of unfinished tasks. In particular, functionalities are
missing that help users to skip tasks or transfer them to other users. The
main tools for this kind of clearance are mainly list on paper or in
electronic form. The tidy-up of task items is supported by the assignment
of priorities but these are static and do not consider the current situation
of the user. For example, it is not considered that a necessary task the
deadline of which is approaching immediately is to be handled with
higher priority than during the time before.

3.1.1.5 Context Analysis

The context of knowledge workers is mainly given by their inclusion in
formal and informal groups in which they exchange information.
Synergies between different tasks are often discovered during a
conversation in the coffee corner or during a travel. These networks also
provide the information about who is to be asked regarding a specific
question or to whom a specific task is to be delegated.

Knowledge work is significantly characterised by the occurrence of
exceptions that prevent this kind of work from routinisation. In particular
these exception cannot be handled in a standard way and require
improvisation based on the experience of the knowledge worker. This
experience is mainly based on implicit knowledge (Riss et al., 2007). It
includes the knowledge of most promising contact persons whom can be
asked regarding certain questions or best practice how to proceed in
unclear cases. The handling of these cases is often based on analogies to
previous cases.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 14

3.1.1.6 Summary

Activity Theory provides a powerful instrument to analyse the situation of
knowledge workers, providing constituents to be considered in designing
new software. We can base it on a set of core concepts consisting in
object-orientation, the principles of internalization/externalization,
mediation, three-level schema of activity, and continuous development.

It takes the contradictions in existing work situations into account and
helps to understand the individual needs and problems of users. In the
previous investigation, we have not applied AT to individual activities but
to an entire class of tasks. However, this proceeding is not unusual. For
example, Engeström (1987) has applied activity theory to entire
paradigms such as scientific work in an abstract sense. This is legitimate
and reveals the problems and contradictions that appear on this abstract
level. We have applied a schema described by Jonassen and Rohrer-
Murphy (1999) to analyse the activities of knowledge workers. This
analysis gave us valuable information about the point that is amendable
in the current situation.

3.1.2. Coordination theory (CT)

Coordination theory (CT) is an organizational framework for the analysis
and improvement of coordination of activities of a number of actors. This
concerns a variety of disciplines such as computer science, political
science, management science, sociology, organisation theory and others.
It centrally addresses the question on how activities of complex systems
can be coordinated to improve their interplay.

Malone and Crowston define within CT the term coordination as
“managing dependencies between activities” (Malone Crowston 1990 and
1994). CT focuses on the dependencies between activities. Its main claim
is that “dependencies and the mechanisms for managing them are
general, that is, a given dependency and a mechanism to manage it will
be found in a variety of organizational settings” (Crowston et al. 2004).
This enables CT to identify dependency types and associate coordination
mechanisms. For a concrete dependency, based on the recognition of a
dependency type, we may choose and evaluate several alternative
coordination mechanisms in order to optimize the management of the
dependency, i.e. the coordination process.

3.1.2.1 Fundamental Contributions of Coordination Theory

CT has three fundamental contributions according to (Crowston et al.
2004):

First, we have chosen the definition of coordination, as given above, out
of numerous possibilities in order to facilitate the modelling process. In
difference to other definitions, this definition states that dependencies
arise “between tasks rather than individuals or units” (Crowston et al.
2004) leading to a simplified modelling of effects for “reassignments of
activities to different actors” (Crowston et al. 2004). In the same way,
the chosen definition focuses on the “cause for a need to coordinate,
rather than on the desired outcome of coordination” (Crowston et al.
2004), which simplifies modelling as well.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 15

Second, a modelling framework, i.e., a “theoretical framework for
analyzing coordination in complex processes” (Crowston et al. 2004),
contributes to user task analysis and modelling.

The main concepts of the framework are tasks, actors and resources.
Group action has been analyzed in terms of “actors performing
interdependent tasks” (Crowston et al. 2004). In this respect, task is
considered synonym to activity. “These tasks might require or create
resources of various types”. Thereby, “actors in organizations face
coordination problems arising from dependencies that constrain how
tasks can be performed.”

As a side remark, Malone and Crowston (1994) mentioned that
coordination mechanisms rely on “other necessary group functions, such
as decision making, communications and development of shared
understandings and collective sense-making”. Nevertheless, they focus
on coordination aspects.

Third, CT presents a typology of dependencies and coordination
mechanisms. Because of the claim of generality of dependencies and
coordination mechanisms, the typology of dependencies assigns for each
dependency type and number of possible coordination mechanisms that
can be used to manage the dependency. Table 3.1 shows the typology of
dependencies and related coordination mechanisms as identified by
Malone and Crowston (1994). Several refinements of this typology have
been created (Crowston et al. 2004).

Dependency Examples of coordination processes for
managing dependency

Shared resources “First come/first serve”, priority order,
budgets, managerial decision, market-like
bidding

Task assignments (same as for “Shared resources”)

Producer / consumer relationships

Prerequisite constraints Notification, sequencing, tracking

Transfer Inventory management (e.g., “Just In
Time”, “Economic Order Quantity”)

Usability Standardization, ask users, participatory
design

Design for manufacturability Concurrent engineering

Simultaneity constraints Scheduling, synchronization

Task / sub-task Goal selection, task decomposition

Table 3.1: Examples of common dependencies between Activities and Alternative
Coordination processes for managing them (Indentations in the left column
indicate more specialized versions of general dependency types) (Malone

Crowston 1994).

For example, the dependency ‘Task assignments’ describes the constraint
that a task requires for its execution a certain skill set of an actor. As
another example, the producer/consumer dependency describes the
situation where one task creates a resource that is created by another
task. It is subdivided in three sub-dependencies highlighting sub-aspects,
e.g., the precedence sub-dependency represents the fact that actors
performing the second task need to be noticed when the required
resource becomes available in order to start their task.

A coordination mechanism represents the additional work that an actor
has to perform to overcome these coordination problems (Crowston et al.
2004). As indicated in Table 3.1, the coordination process of the

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 16

dependency ‘Task assignments’ can be managed by several coordination
mechanisms striving all to identify an actor with the required skill set,
e.g. by a manager choosing a certain employee.

CT “suggests identifying and studying such common dependencies and
their related coordination mechanisms across a wide variety of
organizational settings” (Crowston et al. 2004). The identification of
coordination mechanisms enables organisations to generate alternative
processes. This means for the application of CT to a concrete
dependency, that the analysis reveals a certain type of dependency and
based on this, several coordination mechanisms can be applied and
evaluated in order to better manage the dependency, i.e., to improve the
coordination.

3.1.2.2 Implications for task management (models)

CT addresses a domain that is highly relevant for task management. Just
as CT, task management deals with tasks that are executed by actors
with the help of resources. Thereby, dependencies between tasks and
tasks, tasks and actors, tasks and resources, resources and resources,
and actors and resources can be classified into several dependency
types. For example, the already identified dependency types ‘Task
assignments’ and ‘Task / sub-task’ reside in the direct focus of task
management.

The concrete application of CT for task management can take place by
transferring the principle of coordination theory – management of
dependencies, categorisation of dependencies and generation of
alternative coordination processes – to tasks patterns:

• A task pattern contains already explicit representations of
dependencies by the relationships to its related resources (i.e.
information documents, etc.), tasks (i.e. sub-tasks) and actors
(i.e. task executors, task owners).

• A task pattern can incorporate a classification for each of its
explicitly stated dependencies. For example, the relationship of
the sub-task executor can be classified as a representation of the
‘Task assignments’ (task - actor) dependency.

• Based on the classification information, several specified
coordination mechanisms can be offered and the user then
selects one of these. In analogy to CT, the user then can see the
possible ‘process alternatives’ and may choose one of them. This
can be represented in the task management application by
offering dynamically ‘coordination options’ that enable the user to
choose this coordination mechanism. A representation of the
coordination mechanisms based on the dependency types is
required as well.

• In terms of the task management model, this requires an
attribute for the dependency type.

3.1.3. Object-Oriented Activity Support

This section presents the model ‘Object-oriented Activity Support’
(OOActSM) as presented by Teege (1996). He developed the model for
integrated computer-supported cooperative work (CSCW) systems.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 17

Teege (1996) first develops an activity support model and applies the
paradigm of object-orientation to this model. From today’s perspective,
the presented paradigm of object-orientation is not relevant for activity
support; however, the activity support model provides several interesting
aspects, which are presented below.

Teege (1996) chose the concept of ‘activity’ as the central basic
abstraction with the goal in mind to gather a general concept covering all
aspects of CSCW. Other possibilities were “workflows, conversations,
documents, groups, or conferences”.

The definition of an activity was targeted for the creation of an
integrated CSCW system. This leads to a characterization of activity by
three components:

• Sub-activity structure: An activity has a hierarchical structure
of sub-activities.

• Executing actor: An activity is executed by an actor, e.g. a
“single person, a group of persons, or a programmed
“autonomous agent” in a computer” (Teege 1996)

• Context: The context of an activity contains e.g. “tools or
information needed, and objects which are changed or produced”
Teege 1996).

Teege (1996) states that this definition of an activity covers a “large
number of activity kinds”, one classification kind consists of “single-user
activities without cooperation, cooperative activities by a group, and
activities executed automatically by programmed systems” (Teege 1996)

Teege (1996) further introduces two aspects for activities, i.e. managing
activity instances and specifying activity kinds.

Activity kinds contain a description of how to perform and organize an
activity part. In this respect, we can compare activity kinds to the
concept of task patterns (Riss et al. 2005)

Teege (1996) reports the observation that within work processes often a
design aspect is involved, i.e. an actor not only executes the work but as
well finds alternative ways to perform and organize parts of the activity.
Therefore, the proposed model first supports the specification of activity
kinds and second supports their design. Teege (1996) defined three
requirements for the design of ‘activity kinds’:

• The “specification of activity kinds must not be restricted to a
single specification mechanism” (Teege 1996). Teege mentions a
control flow specification as an example which may be useful for
some but not necessarily for all activity kinds.

• The “model must support a wide spectrum of degree of detail”
(Teege 1996). The specification of activity kinds may be rather
general when details about the activity are not known, e.g. a
single person conducts an activity. On the other hand, an activity
kind specification can contain a detailed description and
individual steps.

• It should be possible to “reuse existing specifications by
extending or modifying them” (Teege 1996). Teege mentions the
example situation of sending a letter where the sub-activities
depend on the used medium, e.g. mail or electronic mail.

Activity instances are the entities that “allow the representation and
support of concrete activities” (Teege 1996). Teege (1996) defines three

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 18

types of support by the system for activity instances defined in the
model.

• Structuring: Structuring contains the maintenance of the
activity structure, e.g. the sub-activities.

• History: The history collects information on the activity, which is
“not part of the activity kind” (Teege 1996) and which is used to
determine on how to proceed with the activity. In the same way,
after the completed execution of an activity, we can use the
history to “design activity kinds for similar activities, thus reusing
the experience gained while executing the activity” (Teege 1996)

• Execution: Executing sub-steps support the execution of
activities by organizing the “sequencing of steps or the
coordination among different actors”. Sub-step execution is only
supported in case that the computer performs the respective
sub-step, e.g., sending an email. Step sequence organization
requires a mechanically interpretable execution scheme for each
activity, e.g., like in workflow applications

To enable the support as described in the paragraph above, Teege
(1996) defined several requirements. Thus, the representation of all
activity parts requires rich structuring facilities, the maintenance of a
state for activity instances and activity instances should provide storing
facilities for history information and for activity-specific execution
procedures.

Moreover, Teege (1996) states that the model explicitly doesn’t include
specific theories of coordination or communication in order to enable
coexisting theories in the model. This is due to the reason that each of
these can be “used for modeling corresponding specific activity kinds”
[Teege (1996)]. Teege (1996) mentions explicitly “activity theory (Kuutti,
1991), coordination theory (Malone and Crowston, 1990), communication
for action (Winograd, 1988), or the action workflow approach (Medina—
Mora et al. 1992)”.

Summed up, OOActSM provides several contributions for task modelling
having in mind that the analogy of activities to tasks is obvious:

• Choosing the concept of ‘activity’ as the central basic abstraction
over the other possibilities like “workflows, conversations,
documents, groups, or conferences”.

• Separation between activity instances and activity kinds: Work
processes involve often a design aspect, which is captured by
activity kinds, whereby activity instances represent the
representation and support of concrete activities.

3.2. Exemplary Task Model Role Models

Having treated general task modelling methodologies in the last section,
we now focus on concrete task models from literature, products and
research prototypes. The goal is to describe good examples of task
modelling that serve as role models for the Nepomuk task modelling. We
also refer to these models and partial aspects as how-concepts since they
throw some light on how we can describe the previously introduced
concepts in a formal way.

In particular, this section presents exemplarily concepts on how to
describe model tasks in a concrete way. First, the analysis includes
research prototypes such Unified Activity Management (UAM) and Task

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 19

Manager (1993). Second, selected modelling aspects, such as tasks vs.
discrete sub-tasks and task states, are highlighted based on scientific
literature.

3.2.1. Unified Activity Management (UAM)

IBM’s Unified Activity Management (UAM) (Moran et al. 2005) aims at
building a generic computational construct to represent human
collaborative activities by capturing the salient elements of the idea of an
activity. Additionally, the activity construct should be amenable to
support the scaffolding of infrastructure and tools around the concept of
the activity. An activity describes the people involved and their roles, the
resources used (including tools, people and activity artefacts), the results
produced, the events related to the activity and the relationship to other
activities.

Activities seldom exist in isolation. Rather, they are related to other
activities (see Figure 3.7). The main relationship is that of sub- and
super-activity whereby an activity can be decomposed into one or more
sub-activities and is itself part of one or more super-activities.
Furthermore, an activity can depend on (as a consumer of) other
activities (as producer).

Activity

Event
Activity
Pattern

instance

Agent

role

log

Activity

prototype

Activity
dependency

Model
State

other

Description

Activity

sub-activity

Activity

sub-activity

Artifact

Tool

Flow
Operator

reactionreaction
Action

Message

Activity

resource

Figure 3.7: Unified Activity Representation (a “Metamodel for Work”) (Moran
2005a)

The objectives of the UAM activity model (Moran et al. 2005) include:

• To organise work around activities instead of tools and
artefacts – the activity description contains pointers to
resources related to the activity. That is, activity descriptions
encode metadata that bind the activity artefacts together. To this
end, Moran et al. (2005) are developing a core Unified Activity
ontology based on OWL.

• To guide, support, and coordinate work but not to overly
constraint it – people are free to adapt activity descriptions to
the work situations. Furthermore, Moran et al. (2006) are
planning to extend UAM with access control policies and

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 20

constraint handling to support interoperability with formal
processes such as workflows.

• To provide a single place for people to manage the whole
of their activities – having one place to organise all (shared)
activities provides a higher-level view for reflection including
planning, prioritisation and negotiation. Furthermore, the core
ontology defines a generic collaboration activity to unify activity-
related information across applications.

• To capture, reuse and evolve best practices in activity
patterns – activity patterns can be developed and incrementally
refined by analysing variations of activity instances.

• To integrate informal business activities and workflow-
driven business processes – activities complement workflow
processes by delegating complex social activity to people via
UAM. Figure 3.8 describes the relation between processes,
activities and actions (well-defined pieces of work e.g. write
email or browse website). Whereas actions are spontaneous and
reactive and processes are fully pre-planned and directed,
activities provide a means for people to be reflective about their
work (Moran 2005).

a

A

AA A

Process
people are directed

Activity
people are reflective

Action
people are
spontaneous
and reactive

Figure 3.8: Modes of working (Moran 2005)

Activity instances can be formally and incrementally refined into best
practice in the form of activity patterns from which other activity
instances emanate (see Figure 3.9). This evolutionary process involves
analyzing variations between related instances. However, UAM does not
define any methodology nor does it provide any user guidance for
abstracting selected parts of the task description. Furthermore, the clear
conceptual separation of processes and activities in UAM make it less
amenable to formalize activity patterns as process fragments, which can
be readily orchestrated in a business-driven workflow process. On the
other hand, the Nepomuk task management model does not make such a
clear distinction. This leaves additional research avenues open to
exploration in subsequent work.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 21

Activity Pattern Activity instance(s)Activity (just do it)

Figure 3.9: Activity pattern lifecycle (Moran 2005a)

Figure 3.10 shows an Eclipse-based prototype of UAM developed at IBM.
The Unified Activity ontology, however, is at present incomplete and not
yet generally available.

Figure 3.10: Shared activity checklist in an Eclipse-based prototype
(Moran et al. 2005)

3.2.2. Task Manager (1993)

Task Manager (Kreifelts et al. 1993) is a software system for sharing to-
do lists. This includes the sharing and distributed manipulation of a set of
common tasks.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 22

Task Manager highlights already in 1993 several highly relevant aspects.
The sections below present selected aspects being relevant for the
modelling tasks.

Guareis de Farias et al. (2000) reconstructed the main objects of the
underlying “cooperative model” of Task Manager in a class diagram as
presented in Figure 3.11.

Figure 3.11: Task Manager class diagram (Guareis de Farias et al. 2000)

Task manager is a tool, however it incorporates a “cooperative model”
being employed in the development of Task Manager (Guareis de Farias
et al. 2000).

3.2.2.1 Addressed Issues

Task Manager focuses on resolving identified problems of ‘office
procedure systems’, today’s business process management systems. This
includes the “rigidity of pre-defined procedures” and “isolation from
informal communication and information sharing” based on observations
conducted on previous office procedure systems (Kreifelts et al. 1993).
“Rigidity of pre-defined procedures” corresponds in today’s language to
the rigidity of process models in business process management
software. Kreifelts and his co-authors argue for avoiding the
implications of rigidity for “treating models of cooperative work as
resources to be defined, modified, and referred to for information
purposes instead of as prescriptions to be adhered to” (Kreifelts et al.
1993). The other problem domain of existing office procedure systems’
isolation from informal communication and information sharing
is today still relevant for business process management software. This is
relevant despite research efforts for this software category and for
related categories such as groupware and collaboration support systems.
Kreifelts et al. (1993) argue to overcome the isolation issue that “future
coordination support systems have to be able to interface to existing
computer systems that support the actual work”.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 23

3.2.2.2 Task model entities

Task Manager has several task model entities, referred to as components
within (Kreifelts et al. 1993).

3.2.2.2.1 Task - Result- vs. Procedure- vs. Information-Sharing-
Orientation

Kreifelts et al. (1993) identify for Task Manager several aspects of a task
depending on the predominant orientation of the task:

• A result-oriented task can be regarded as “a project, i.e. a
common goal of a set of people” (Kreifelts et al. 1993).

• A procedure-oriented task consists of a task-breakdown into
several sub-tasks and corresponding dependencies between the
tasks and associated documents. They note that “the more
detailed specifications are given, the more a task resembles an
office procedure with causal dependencies between sub-tasks
and documents of a task” (Kreifelts et al. 1993).

• A information-sharing-oriented task represents a “simple folder
with little or no structure defined” where a task is “simply a
shared container of sub-tasks, documents and/or services, and
messages that people exchange about in a common task”
(Kreifelts et al. 1993).

3.2.2.2.2 Documents / Services

Kreifelts et al. (1993) state that resources are needed in order to achieve
the goal of task. They attach resources to tasks and define them as
“pointers” to various kinds of computerized objects. Resources
include documents as well as “rooms, budgets, machinery, etc.” (Kreifelts
et al. 1993). For Task Manager, services handle the resources outside the
task manager and refer to them from the Task Manager.

3.2.2.2.3 People / Users

Kreifelts et al. (1993) distinguish for the involved resource ‘person’
several “levels of participation and of competence”.

• Participants are involved people that all have within the task
“equal access rights to the attributes of a task, its documents
and services and its messages” (Kreifelts et al. 1993).

• Upon invitation, other people can take part in a task by either
being participants or observers. “Observers are people interested
in the completion of the task with read access only to any
information and the right to participate in the informal message
exchange associated with the task” (Kreifelts et al. 1993).

• The role person responsible assigns the responsibility for a task
to a dedicated person. This includes “exclusive write access to
some of the tasks attributes, e.g. state, start date and deadline,
and only s/he may reassign the responsibility of the task to
another person” (Kreifelts et al. 1993).

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 24

3.2.2.3 Task Model Attributes

Kreifelts et al. (1993) described attributes that further specify the task
model entities. Table 3.2 lists several of their core task attributes:

Attribute Description

Title of a task (the only mandatory
attribute)

“both identifies a task to its participants
and gives a short and concise description
of its goal”

Deadline of a task The “system reminds the user of
approaching deadlines, but does not
enforce any actions with respect to
overdue tasks.”

Task state See table below

Table 3.2: Core task attributes (Kreifelts et al. 1993).

The ‘person responsible’ has special rights on a task, e.g. she may set
the task state, as shown in detail in Table 3.3:

Task state Possible task state values

Completion state Not finished / finished

Pending task “Pending, i.e. there is a causal dependence
on another task not yet finished, or not
pending.”

Task acknowledgement “Task can be acknowledged by the
responsible actor. This is to inform the co-
workers of the responsible person’s
awareness and acceptance of the task s/he
has been assigned to.”

Table 3.3: Task states (Kreifelts et al. 1993).

Several attributes detail how the task should be performed, see Table
3.4:

Attribute Description

Time-related data E.g. start date

Data that describes causal dependencies
between tasks

Data that describes causal dependencies
between tasks and documents

Personal data attached to a task, such as
notes etc.

Table 3.4: Task performance detail attributes (Kreifelts et al. 1993).

The dependencies, e.g., between tasks, are described locally, i.e., as user
specific. Kreifelts et al. (1993) describe these rather short and
ambiguously by referring to latter attributes: “The latter attributes are
purely local and are not distributed to and shared by the other
participants.” (Kreifelts et al. 1993). Prinz (1994) talks about the same
aspect with respect to a very similar model for the Computer Supported
Cooperative Work (CSCW) prototype TOSCA: “Resources can be
associated to each task, such as documents, forms, calendars, etc. This
is done by appropriate relationship objects. These are described user
specific, so that each user gets individual information about the people
who are responsible or the forms which are valid for him.” (Prinz 1994)

“Documents and/or services may be attached to any task in which the
user participates at any time.” We have attached some of the respective
attributes in Table 3.5:

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 25

Attribute Description

“Name

History of who did what and when

The owner of the document”

Abstract The Abstract “contains an informal text
description of the document and it frees
the user of having to transfer, open and
read the entire document when s/he is
only interested in a resume”

Table 3.5: Document attributes (Kreifelts et al. 1993).

3.2.2.4 Operations

The following Table 3.6 lists several operations and the allowed entities
that are allowed to execute these operations as presented by Kreifelts et
al. (1993):

Who? What?

Create tasks and sub-tasks

Create dependencies between tasks

Create dependencies between tasks and documents

Set and modify attributes

Add, modify, and remove documents and service requests

Users

Add, modify, and remove documents and service requests

User (Person responsible) Refuse responsibility and reassign it to another user

User (Any participant) Introduce new participants or observers to a task

Tasks Copy and paste or move around freely

Distribute information on tasks

Makes available resources across the (world-wide) network

Keeps the data up-to-date

Resolves conflicts of synchronization

Each user has instant access to the shared tasks s/he is
involved in

Guarantees a consistent view on tasks for each participant

Keeps track of the actions the users take

Monitoring and task tracking at execution time

System

Report generation after completion of a task is rendered
possible

Table 3.6: Operations of Task Manager (Kreifelts et al. 1993).

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 26

3.2.3. Further selected aspects

This section presents modelling aspects, i.e. tasks vs. discrete sub-tasks
and task states, having been identified as subject to discussion.

3.2.3.1 Unified View on Tasks vs. Discrete Sub-tasks – FRODO Example

Thinking about the structure of decomposed tasks having sub- and
super-tasks, leads to the question how we can model these tasks and
sub-/super-tasks. In this respect, the question arises, whether a unified
view on tasks is reasonable, e.g., by integrating the representation of
tasks and sub-tasks in a single data structure. Otherwise, we would need
a discrete data structures for both tasks and sub-tasks.

A rationale for following a unified view on the task structure is presented
by means of the example of FRODO. FRODO is a research project and
deals with “methods and tools for building and maintaining distributed
Organizational Memories in a real-world enterprise environment” (FRODO
2005).

Thereby, FRODO aims at knowledge-intensive activities with a process-
oriented knowledge management approach by using the concept of
weakly-structured workflows. FRODO TaskMan demonstrates weakly
structured workflows being an “agent-based workflow management
system integrated in organizational memory information systems”
(FRODO 2005).

With respect to the unified view on tasks in FRODO, the following design
rationale underlies the FRODO TaskMan weakly-structured workflow-
system (cf. FRODO 2003):

• complete flexibility of the workflow execution; modelling and
execution is intertwined

• lazy/late-modelling

• hierarchical decomposition of workflow activities

• agent-based architecture: TaskInstance-Agent is responsible for
executing the task respectively "getting the task done"

Due to that, FRODO decided to use the concept of "Task" as the only
object for representing workflows and activities. A task can possess
multiple sub-tasks and at most one super-task. A task without a super-
task is a root task and called 'workflow'.

The task has all ingredients for being a full member of a control and data
flow of a workflow, i.e., it has pre- and post-conditions, input/output-
container, and links to other relevant tasks (e.g., sub-tasks). (Especially,
in FRODO there is no separate control or data flow, all of it is included in
the tasks and built during start-up of the agent system)

Reasons for this are:

• a task is a self-containing entity, describing everything what is
needed to be executed, among others, pointers to super-task, to
workflow (i.e., root-task), to predecessors respectively start-
conditions, all sub-tasks

• flexibility in changing tasks on-the-fly, no need to transform a
workflow in a task or a task into a sub-task-object as well as take
a sub-task out of a workflow and making it a workflow (or
workflow model) (i.e., root task) by itself.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 27

• ease of handling in the FRODO agent system: distribution of
tasks to agents including required relations (self-containing task
descriptions)

To conclude, following a unified view on the task structure has benefits
that outweigh the reasons for a separate task and sub-/super-task
structures.

3.2.3.2 Task states

Task states describe the operational status of a given task at any instant,
and may be set explicitly by the user or automatically determined by the
system.

Grebner (2006) proposed five operational task states for each task that
are depicted in Figure 3.12. The state of a sub-task may vary
independently of its super-task. The status value is derived from the
status value of the latest operation on the task. While the original intent
is to associate task states to task services representing task instances
within the service-oriented task management paradigm rather than
human-centric tasks, the simplicity of Grebner’s task state model is
particularly appealing.

Figure 3.12: Overview of operational task states (Grebner 2006).

Operational
task state Description

open.
notrunning

 The task with the invoked operation has not been selected in the task
inbox yet, i.e. the user does not work on it.

open.
notrunning.sus
pended

The user already begun working on the task operation, but the operation
has been suspended, i.e. the work on the operation rests.

open.
running

The task with the marked operation has been selected from the task
inbox and the user works on it.

closed.
completed

The task operation has been completed successfully, i.e. it is finalized
and the results are delivered.

closed.
abnormalComp
leted

The task operation has produced some errors during execution, i.e. it is
finalized and the results are delivered, but these results may not be
correct. The exact reason, i.e. the exception, is submitted separately
with the output information.

Table 3.7: Operational task states (Grebner 2006).

Dourish et al. (1996) proposed the use of constraints to model
relationships between tasks, and consequently their respective task

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 28

states. Instead of (procedural) transitions between task states,
constraints specify ongoing (declarative) relationships between these
states as the tasks are operated on, e.g., “document formatting should
not be performed unless the text has been approved” (Dourish et al.
1996). This approach suggests that it is useful to distinguish temporal
(ordering of tasks) and dependency relationships.

Figure 3.13: Overview of Freeflow task states (Dourish et al. 1996).

Context Task state Description

Inactive Before any work has been done

Active User has begun work

User

Ready Work is complete

Disabled A task on which the task depends has not been completed

Enabled A task whose preconditions for starting have been met

System

Pending A task prevented from completing due to external
dependencies

Table 3.8: Freeflow task states (Dourish et al. 1996).

Caramba (Dustdar 2004) supports the continuum of process types from
ad hoc processes with no underlying process models to modelled
processes and combinations of the two. However, its main emphasis is
on the ad hoc processes. The system allows the user to start from a
process template and subsequently to deviate by omitting activities from
the template or by adding new ones.

When a Task is instantiated, it becomes an Activity1 in the initial state
new. It remains in this state until it is read by the user. Subsequently,
the user may choose to suspend the activity or to start work on it
(active). However, the user may also choose to delegate the activity to
another user which transfers the responsibility for the activity to the
recipient. On the other hand, other users could be kept informed, as an
observer of the activity, by forwarding the activity to them; the sender
remains responsible for the activity. As applications associated with the
activity are invoked, the activity is said to be applied which, upon
completion, is marked as done which automatically triggers coordination

1 Or instantiated tasks – not to be confused with activities from Activity Theory.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 29

with any dependent activities. Caramba further allows activities, which
are no longer required to be archived. In the event that no executor can
be identified, the no-route state is triggered.

Figure 3.14: Overview of Caramba task (activity) states (Dustdar 2004).

FRODO TaskMan (DFKI 2003) supports the modelling and enactment of
weak workflows as the context for information support in knowledge-
intensive work situations. The worklist handler presents the relevant
tasks and their task states in addition to supporting dynamic process
modification and integrated information access. This model presents one
concern: The flexibility of the numerous transitions to and from each task
state could pose usability problems when the user is confronted with a
gamut of choices he could make at any instant. A fewer number of
transitions is, in general, preferable from a usability perspective.

Task state Description

Initiated A task instance starts here and waits for all
preconditions to be met before proceeding

Processible The task is ready to be processed

In Progress A user is executing the task

Active The task is processible but is temporarily
paused

Suspended The task is suspended indefinitely

Terminated The suspended task is terminated and
subsequently deleted

Completed The task is completed

Table 3.9: FRODO TaskMan task states (DFKI 2003).

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 30

4. Task Management Model Requirements – Scoping

This section derives and defines the scope for a task management model
based on the requirements from the Nepomuk case study scenarios.

The task model presented in this document has to fulfil a dedicated
purpose. This purpose is determined by the case studies conducted in the
work packages WP8000 to WP11000 of the Nepomuk project. These
packages define the application domain of the Nepomuk project and
thereby are eligible to define the requirements needed in order to
address the intended application domain.

First, the task management-related requirements from the case study
scenarios are collected in order to give an overview on the specific
requirements and the surrounding setting. Second, these requirements
are integrated into a coherent view.

4.1. Requirements from the Nepomuk case studies

This section collects the task management-related requirements from the
case study deliverables.

In the following, the requirements regarding task management are
shortly mentioned. Additionally, the goal of the case study and its related
scenarios are mentioned briefly in order to provide an overview on each
case study.

4.1.1. Task Management functional requirements in WP8000

WP8000 focuses on research processes in the bioscience company
Institute Pasteur. Therein, laboratory work plays an important role.

WP8000 considers task management mainly in the context of project
management. For example, the analysis of the top-level user needs leads
to the use of task management in the project management context for
“efficient coordination, planning, and reliable implementation of a preset
sequence of hierarchical tasks, e.g., protocol implementation” (Nepomuk
D8.1 2006, section 2.3).

In a conducted questionnaire for examining user needs, task
management functionality, i.e. “coordination, planning, and
implementation” (Nepomuk D8.1 2006, section 2.3) is ranked rather
weak in comparison to other user needs such as preservation of all data
and information clarity.

Based on the user needs analysis, to-be-scenarios and further
evaluations, WP8000 derives functional requirements. Table 4.1 cites
the requirements that WP8000 considers relevant for WP3 Task
Management. The requirements are grouped in functional areas.

Functional area Requirement identifier and
name Requirement summary

REQ-01-01: Semantic tagging
of files, web pages, and emails

Assigning meta-data to an object,
either restricted by a pre-existing
domain ontology or open for creation
of ad-hoc properties.

FA-01: Entry
and tagging

REQ-01-02: Semantic tagging Assigning meta-data to words,
phrases, or document sections, either

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 31

of phrases inside documents restricted by a pre-existing domain
ontology or open for creation of ad-
hoc properties

REQ-01-03: Semi-automatic
tagging

A) Automatically extracting and
formalizing meta-data from the
available unambiguously structured
information
B) Rules-based learning algorithms for
making tagging suggestions and
learning from the user feedback

FA-03: Sharing REQ-03-02: Automatic
notification

To automatically notify and be notified
of relevant changes in the shared
information (e.g., a new critical
problem has been encountered, an
important result has been achieved, a
relevant experiment has been
conducted).

REQ-05-02: Report draft
generation

Based on content's semantic
structure, automatically generate
drafts of documents from other
documents, e.g., generation of
publication or project report drafts
from research notes.

REQ-05-03: Workflow
management

Tracking of tasks, experiments,
projects, people, and the relationships
between them

FA-05:
Representation,
Visualization,
and Analysis

REQ-05-04: Compatibility with
mobile devices

Availability of information on mobile
devices such as a Palm pilot or a
mobile phone (both for reading and
modification)

FA-06:
Protection of
intellectual
property

REQ-06-02: Audit trail For each modification on the tag level,
it is needed to know who modified it,
and when. This is important for
collaborative editing and protection of
the scientific intellectual property.

Table 4.1: WP8000 functional requirements & areas (Nepomuk D8.1 2006).

4.1.2. Task Management functional requirements in WP9000

WP9000 focuses on a professional business services company scenario by
means of the example TMI, an international network of consulting
companies. The deliverable D9.1 addresses the “analysis on the
professional business services domain in order to derive general domain
requirements and elicit concrete user requirements from TMI” (Nepomuk
D9.1 2006).

WP9000 considers as well task management mainly in the context of
project management. D9.1 depicts in several use cases, i.e. to-be-
scenarios, the use for a task-project management: (TMI use case 1 –
Sales) Nepomuk D9.1 2006, section 4.4.1, (TMI use case 2 – Standard
Product Development) Nepomuk D9.1 2006, section 4.4.2, and (TMI
use case 3 – Customised Product Development, Sharing and
Update) Nepomuk D9.1 2006, section 4.4.3. They give us some
guidance by showing steps to pursue for the creation of a document in a
sales meeting preparation, in the creation of a new standard product and
in the customization of a product.

From these use cases the requirement DOM-01-09 for ‘Semantically
enhanced Task-Project Management’ is derived, see Table 4.2.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 32

Table 4.2: WP9000 functional requirements & areas (Nepomuk D9.1 2006).

4.1.3. Task Management functional requirements in WP10000

WP10000 focuses on the research organisation of SAP AG, i.e. SAP
Research. WP10000 analyses in the deliverable D10.1 (Nepomuk D10.1
2006) the “demands that result from the software research and
development process at SAP and generally in large organisations”.

WP10000 considers task management as a main concept for dealing with
the inherent complexity in this process by giving the participants tools at
hand that enable them to “accomplish their individual tasks as part of the
whole” (Nepomuk D10.1 2006).

WP10000 defines several use cases with task management involvement
in the research domain. These use cases depict the to-be-situation with
applied Nepomuk system and in particular a task management system.
These use cases have been developed based on the combination of (“to-
be”) personas related scenarios and a situation description of the SAP
Research process. In concrete, the use cases consist of scientific paper
creation, proposal creation, project work, project management and
transfer projects for scientific results.

Based on these use cases, functional requirements are derived for the
Nepomuk system. Table 4.3 shows the requirements that affect task
management.

Functional area Requirement identifier and
name Requirement summary

FA 01: Data-
centric
Requirements
at Individual
Level

DOM-01-03: Get support
dealing with emails

The system provides support to users
structuring their email inbox as well
as the creation of new emails.

DOM-02-0: Core Task
Management

The execution of tasks is supported
by a task management that helps to
distribute the work among users in
the network and that fosters the
communication between them.

FA 02: Activity-
centred
Requirements
at Individual
Level (TM)

DOM-02-02: Calendar support
for tasks

The execution of tasks requires
periods of time in which this can take
place. The corresponding planning is

Functional area Requirement identifier and
name Requirement summary

Integrated task-project management
support for the individual knowledge
worker in a networked environment.
The support for individual task-project
management must be embedded in
the user's personal desktop and has
to tackle:

- ad-hoc task planning and flexible
changes,

- collaborative work on task,

- knowledge-intensive tasks with a
huge amount of personal as well as
group information objects, and

FA 01: Desktop
Layer
(Individuals -
PIM)

DOM-01-09: Semantically
enhanced Task-Project
Management

- integration into organizational
processes

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 33

supported by connecting task and
calendar functionalities.

DOM-02-03: Support for
specific task types

The execution of specific tasks which
are regularly repeated can be
supported by the provision of
templates that describe a pattern
according to which a task can be
executed to guide the user.

DOM-02-04: Offline support
for tasks

If the users have no access to the
task management system, e.g., on
meetings or travels, it is necessary to
has offline access to the task
information.

DOM-02-05: Time
Management

The available time of users plays a
central role for the delegation of
work. The system checks whether a
user has enough time to work on a
task.

DOM-02-06: Task Tracking For the execution of tasks in time it is
necessary that the supervisor of a
task gets enough information about
the status of delegated work.

DOM-03-02: Compare
structured information

Users can compare the structures
related to certain types of information
to find overlaps. The aim is to find a
common structure for both parties.

FA 03: Social
Networking
Requirements

DOM-03-03: Collaborative
Tasks

Some tasks cannot be executed by
individual users but require the
cooperation of several co-workers
who work together. This cooperation
is supported by collaborative tasks.

Table 4.3: WP10000 functional requirements & areas (Nepomuk D10.1 2006).

4.1.4. Task Management functional requirements in WP11000

WP11000 focuses on the application of Nepomuk at the open-source on-
line community of Mandriva Linux users in order to equip community
members with a “new generation tool for sharing knowledge related to
the open-source Mandriva Linux project” (Nepomuk D11.1 2006).

WP11000 considers task management in the context of collaboration
support. In the scenario set “a social semantic help desk at work”
(Nepomuk D11.1 2006), task management supports the scenario “A
group of experts write collaboratively a manual on virtualization”. The
group can break down the work by defining “specific and general
activities”, i.e. tasks. Thereby, task patterns can be used in order to re-
use tasks that have been conducted by other groups during the writing of
a manual.

This leads to the definition of several requirements regarding task
management, see Table 4.4:

Functional area
Requirement
identifier and
name

Requirement summary

Knowledge
work process
support

Personal
workflow
support

A service should provide a graphical assistant that
lets the users define automated tasks he wants to
run on this computer. These tasks should be fired
either when a given event occurs (example: an
expert with expertise in the area of webcams

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 34

installation on Linux is now available online for real-
time help) or periodically. The corresponding
workflow to be triggered when the event occurs
should be defined graphically by the user as well.

Task pattern
support

Users should be able to define general task
patterns for a given activity and to store them in
the system for future use by them or others.
Example: in the scenario above related to the
collaborative writing of a manual, the involved
users will be able to instantiate a "task pattern"
describing their activity for coordinating their work,
distribute the various tasks and continuously assess
the progress toward the objective.

Notification
requirements

Users should be able to express the notification
they want to receive using advanced rules.
Notification rules should support both content
related events and user related events. Example:
content updates, content creation, or user
appearing on the network.

Contextual
recommendation

While writing some document, the system should
propose live related resources (documents or
persons) that may be of interest to the user in the
context of his current activity. Example: while an
expert answers a question, he may request
assistance from the system for getting directly
while typing some relevant resources he will point
the reader to.

Table 4.4: WP11000 functional requirements & areas (Nepomuk D11.1 2006).

4.2. Consolidated task management requirements

This section integrates the collected requirements from the Nepomuk
case study deliverables into a coherent view. This coherent view defines
the requirements, on which section 5 defines the task management
model.

Table 4.5 shows the consolidated functional task management
requirements for core task management functions. Core functions are the
functions that are considered relevant for a first implementation level.

Req-
Requirement Requirement details

1 Task Creation Every user can create new tasks

2 Task decomposition – Define sub-tasks

Sub-task dependencies – Create relationships between
sub-tasks within a task

Define input and output of tasks

3 Ad-hoc task planning and flexible changes
([WP9000] DOM-01-09)

4

Task Planning

Support users in structuring their email inbox as well
as the creation of new emails.
([WP10000] DOM-01-03)

5 The transfer of tasks as well as the invitation to tasks
requires a negotiation between the requesting party and
the addressee.
([WP10000] DOM-02-0)

6

Task execution
support

Integrate personal as well as group information objects
([WP9000] DOM-01-09)

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 35

7 Task patterns as the central medium to distribute work
experience on tasks

Support for the execution of specific, regularly repeated
tasks by provision of templates that describe a pattern
according to which a task can be executed to guide the
user.
([WP10000] DOM-02-03) and ([WP11000] Task pattern
support)

8 - Task pattern creation should emanate from existing
cases.

- Leverage an abstraction process (removal or
generalization of context dependent and personal parts of
the task description)

9

Task Patterns

Task pattern update works according to similar
principles as for the creation, i.e.,
- In case that a user deviated from the pattern during the
task execution, the user is encouraged to provide
information in an unobtrusive way, supported by the
Nepomuk task management

10 Ensure that (at least the important) tasks are executed in a
proper manner.
- Efficient prioritization of tasks
- Ensure that users have enough time for their tasks

Assumption: Knowledge workers usually have more tasks
than they can actually accomplish.

11

Time Management

Calendar support for tasks:
The execution of tasks requires periods of time in which
this can take place. The corresponding planning is
supported by connecting task and calendar functionalities.
The available time of users plays a central role for the
delegation of work. The system checks whether a user has
enough time to work on a task.
([WP10000] DOM-02-02) and ([WP10000] DOM-02-05)

12 Tracking of tasks, experiments, projects, people, and the
relationships between them
([WP8000] REQ-05-03)

13

Task Tracking

For the execution of tasks in time it is necessary that the
supervisor of a task gets enough information about the
status of delegated work.
([WP10000] DOM-02-06)

14 Task History /
Audit Trail

For each modification on the tag level, it is needed to track
the audit trail of the changes e.g. who modified it, and
when. This is important for collaborative editing and
protection of the scientific intellectual property.
([WP8000] REQ-06-02)

15 Offline support for
tasks

Make task information accessible offline in case of no
online access to the task management system.
Example: On meetings or travels.
([WP10000] DOM-02-04)

Table 4.5: Consolidated functional task management requirements: Core
functions.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 36

Table 4.6 shows the consolidated functional task management
requirements for some extended functions that are not considered as the
core functions of the Nepomuk task management.

Req-
Requirement Requirement details

16 Availability of information on mobile devices such as a
Palm pilot or a mobile phone (both for reading and
modification)
([WP8000] REQ-05-04)

17

Task access

Support for individual task-project management is
embedded in the user's personal desktop
([WP9000] DOM-01-09)

Relevant work packages: WP1000

18 Automatic notification:
- Automatically notify and be notified upon relevant changes
in the shared information
-Example: a new critical problem has been encountered, an
important result has been achieved, a relevant experiment
has been conducted
([WP8000] REQ-03-02)

Relevant work packages: WP2000

19

Notification

Notification rules:
- Users should be able to express the notification they want
to receive using advanced rules.
- Notification rules should support both content related
events and user related events.
- Example: content updates, content creation, or user
appearing on the network.
([WP11000] Notification requirements)

20 Contextual
recommendation

While writing some document, the system should propose
live related resources (documents or persons) that may
be of interest to the user in the context of his current
activity. Example: while an expert answers a question, he
may request assistance from the system for getting directly
while typing some relevant resources he will point the
reader to.
([WP11000] Contextual recommendation)

Relevant work packages: WP2000

21 Report draft generation: Based on content's semantic
structure, automatically generate drafts of documents from
other documents, e.g., generation of publication or project
report drafts from research notes.
([WP8000] REQ-05-02)

22

Content
provisioning and
comparison

Compare structured information: Users can compare
the structures related to certain types of information to find
overlaps. The aim is to find a common structure for both
parties.
([WP10000] DOM-03-02)

23 Semantic tagging of files, web pages, and emails:
Assign meta-data to an object, either restricted by a pre-
existing domain ontology or open for creation of ad-hoc
properties.
([WP8000] REQ-01-01)

Relevant work packages: WP1000, WP2000

24

Tagging

Semantic tagging of phrases inside documents:
Assign meta-data to words, phrases, or document sections,
either restricted by a pre-existing domain ontology or open
for creation of ad-hoc properties
([WP8000] REQ-01-02)

Relevant work packages: WP1000

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 37

25 Semi-automatic tagging:
A) Automatically extract and formalize meta-data from the
available, unambiguously structured information
B) Rule-based learning algorithms for making tagging
suggestions and learning from the user feedback
([WP8000] REQ-01-03)

Relevant work packages: WP1000, WP2000

26 Personal workflow
support

Provide a graphical assistant that lets the users define
automated tasks he wants to run on this computer

These tasks should be fired either when a given event
occurs (example: an expert with expertise in the area of
webcams installation on Linux is now available online for
real-time help) or periodically.

The corresponding workflow to be triggered when the
event occurs should be defined graphically by the user as
well.

([WP11000] Personal workflow support)

27 Organizational
process integration

Integration into organizational processes
([WP9000] DOM-01-09)

Relevant work packages: WP10000

Table 4.6: Consolidated functional task management requirements: Extended
functions.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 38

5. Conceptual Task Management Model

In this section, we will describe the design of the conceptual model of
the collaboration task management. The model is based on the theories
described in Section 3 that provide the basis on which we build the
model. Beside deeply theoretical models as for example Activity Theory
we also build on more concrete task management models as described in
Section 3.2. , even if these are not explicitly mentioned. Throughout the
section, we will also refer to the guiding principles stated in Section 2 in
order to explain specific design features.

In the first subsection, we provide the static view of the task model
describing the main objects we are dealing with. Here we introduce our
understanding of concepts such as activity, task, etc. and describe their
principle properties. In the following subsection, we then go to the
functions that are required to handle the objects described before, i.e.,
we provide the operational model of the task management. In the
concluding subsection, we refer to the requirements as they have been
identified in Section 4 and show which requirement is covered by which
concept.

5.1. Basic Task Concepts

In this section, we describe the main concepts that appear in the context
of the task management. They are mainly derived from the theories
described in Section 3 or they result from other considerations that are
then mentioned explicitly. They provide the conceptual framework for
which we later described the functionality and model.

5.1.1. Personal Task Management

The Personal Task Management (PTM) is the central tool on the users’
desktop that manages their tasks. The PTM includes a personal task
repository (PTR) in which all tasks are stored, with which the user is
concerned (see Section 6.4.1). Furthermore, the PTM provides services
that go beyond the handling of a single task, e.g., to-do lists or related
services.

The PTM is the central interface to the user and therefore must provide
an environment that is attractive enough to the users to convince them
to stay in the system and to use it.

The PTM systems of different users are related among each other in
order to exchange data about work items. However, the PTM does not
only provide services to delegate and organize work but also an
environment that helps people to protocol their work since these work
protocols provide a valuable means to help other users to accomplish
their work. It is particularly the aim of this proceeding not only to gain
best practice but also to show limits of existing practice. It can be
assumed that it is easier to get this information during the execution of a
task than afterwards.

The motivation for the user to provide this information must be that the
more information the system gets the better the services provided by the
system work. This especially holds for the retrieval of task related
information that is based on the provided task data.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 39

5.1.2. Activity / Action

The concepts of Activity and Action that are used in this document
correspond to those developed in Activity Theory, describing an activity
as the purposeful interaction of a human or non-human actor with the
world in a process of mutual transformation (Leontiev, 1978). The
difference between activities and actions has been described above.
Since we are mainly dealing with object-orientation we will prefer the
term action instead of activity. Actions can be individual or
collaborative, depending on the fact whether they are executed by a
single actor or group of actors. In particular, Activity Theory yields the
following properties of actions:

1. They are directed towards a material or mental object (goal)
which is specified at the beginning of the action, even it might be
due to changes during the execution.

2. The action possesses a fixed duration, i.e., it starts and ends at
specific points of time, even if there might be interrupts in
between.

3. It is related to a subject (actor) who executes it.

4. Generally the action is mediated by tools to execute the action
which might be symbolic (information) or material
(resources).

5. The purposefulness of actions requires that actions are based on
plans, where the plan describes how the goal is to be achieved
by the execution.

From Psychology we know that actions can be divided into different
action phases (Gollwitzer, 1990):

1. Goal setting, if a goal is not yet provided externally,

2. Planning, how the goal can be achieved,

3. Enactment of the actual execution, and finally

4. Evaluation of the result.

The evaluation can also be done externally if, for example, an external
requester has initiated an action. The PTM must appropriately support all
of these stages.

In Section 3.1.2.1 it has already been pointed out that an actor requires
a specific skill set to be able to execute a specific type of task. Such
capability related information might include

1. Specific skills,

2. Persons’ role in an organisation,

3. Organisational unit for which a person is working,

4. Other information about more non-standard capabilities.

This kind of information can help to find persons that are able to work on
a specific task and therefore helpful for the assignment of delegated
tasks. Since this set can encompass more than mere skills we rather refer
to them as abilities.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 40

5.1.3. Task

The concept of task is derived from the concept of activity. However
whereas the action focuses on the execution, the task describes a
projected action, i.e., an action to be executed. Since we do not
distinguish between actions and task with respect to the technical
implementation the task includes all attributes that belong to an action,
however, a task is also meaningful if not all attributes are assigned to
values, e.g., for a task it is not necessary that an actor is assigned.

With respect to the actor of a task we distinguish two roles: (1) the
owner and (2) the executor. The main difference between these two
roles is that the owner is responsible for the execution of the task with
respect to external parties while the executor is only working on the task.
Both roles are explained in more detail in Section 5.1.6.

Like the action, the task essentially refers to a goal. How this goal is
achieved, however, is open to the action, which results from the task.
This means that attributes such as duration, actor, information,
resources, and plan may only be partially specified. In contrast to
actions, the actors of a task can change, i.e., a task can be started by
one actor and can be finished by another. This means that the first actor
has not completed the action while the final actor has started the action
in the middle of the task. We can generally relate the goal to a concrete
objective, which might be a document to be delivered or any other
object produced or modified in the task. In contrast to the goal, which
may refer to a mere activity (e.g., learn something about astronomy), the
objective is a concrete object, which stands in the centre of the task
activity. However, it can also refer to a specific state of an object, e.g., if
a computer system shows a specific error then the objective can be to
transfer the system into the state error-free. Further details to goals are
also given in Section 5.1.3.3.

The granularity of tasks might be different. Since a task describes a
unit of work that can be accomplished mainly independently (except for
required input and delivered output including some exchange of
messages – for details of the input and output concepts refer to Section
5.1.3.1) it does not make sense to describe all activities as separate
tasks. Otherwise, the effort for users of the task management would be
increased without the corresponding benefit. However, it should be kept
in mind that tasks will be the units of reuse. This means that activities,
which appear as part of a task, cannot not be treated as independent
units of reuse but only in connection to the containing task. This
independency should be the final aim of the task handling.

If we consider the task with respect to the different phases that we have
found for actions, we find that a task can include sub-tasks, i.e., parts
of the task that are related to separate tasks and might be performed by
other users. The identification of such sub-tasks is part of the task
planning and their initiation part of the execution. Details are provided in
Sections 5.1.3.1 and 5.2.1.2, respectively.

After the execution of a task has been completed, the task becomes an
information object called case. This notion is taken from the workflow
terminology (WfMC, 1999) but the role of cases in the Nepomuk Task
Management differs to some respect from the usage there. In the
Nepomuk context, we only use it to distinguish between task as active
units of work and cases as mere information objects that might provide
guidance for other tasks.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 41

5.1.3.1 Task Structure

A task, which is not elementary, possesses a structural component
formed by a scheme of sub-tasks. The execution of these sub-tasks is
part of the task execution. The concept of sub-tasks is described in the
next subsection.

The handling of tasks is often related to an exchange of information and
resources. Actually also information can be regarded as a kind of
resource so that the distinction only refers to the fact that information is
treated in a particular format by the Task Management. To this end we
distinguish between information units (IU) and resource units (RU).
RUs are generally external to the Task Management, e.g., rooms,
formatted documents, templates, etc., while IUs are treated as internal
entities. In particular, this means that they are stored and administered
within the Task Management while other resources are stored externally.

A task management working in this way would not include kind of social
information exchange beyond delegation of tasks and the respective
exchange of IU and RU. The particular way in which the communication
between requesters and executors is established, e.g., via email is to be
described in another document.

In the following, the general structure of a task is to be described. This
includes the main data that are assigned to a task after it has been
initiated.

Figure 5.1: Task Structure.

The principle structure of a task after its initiation is described in Figure
5.1. The different components of the task are described as aspects,
which will be explained in the following. The functional aspect describes
the general sub-tasks to form the structural part of the task. During the
instantiation, they will be related to task pattern that provide the
template for the execution. The control aspect describes the
dependencies between sub-tasks and resembles the description of

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 42

workflow models. Indeed, we can regard it as an elementary process
model that cannot be further decomposed in separate tasks. The
information aspect describes the general information related to the task
pattern as well as the context dependent information that is added to the
template. It is organized in IUs that are to be designed in a way that
they contain separately usable information. For input information, this
might mean that the input is supplemented by additional context
information that makes it reusable. The organisational aspects mainly
refer to possible and actual task owners, e.g., from former task owners in
other cases, and shall support the identification of possible candidates.
Finally, the resource aspect describes the RUs that are assigned to a
task. During the execution of the task the data related to the different
aspects are continuously updated due to the current status. After the
execution has been finished, the entire information is complied in a case
that is stored locally. Depending on the users modification of the pattern
realized in the concrete case, these users are encouraged to update the
task pattern according to their changes. Details regarding the proceeding
will be provided in the following.

After the execution of a task has been completed, the task becomes an
information object called case. This notion is taken from the workflow
terminology (WfMC, 1999) but the role of cases in the Nepomuk Task
Management differs to some respect from the usage there. In the
Nepomuk context, we only use it to distinguish between task as active
units of work and cases as mere information objects that might provide
guidance for other tasks.

5.1.3.2 Collaborative Tasks

One person does not execute most tasks exclusively but by a group of
persons. Here we can distinguish two different cases: (1) Separable
activities, i.e., the work related to a task can be separated into different
units that can be processed by individual users; in this case, sub-tasks
are used to define these units. (2) Collaborative activities, i.e., it is
not possible to separate the activities in a task among different users so
that the users have to jointly work on the task. A typical example for
such a task is a meeting, even if the different participants might attend
the meeting for different reasons, e.g., some as information providers
and others as information consumers; they nevertheless share the same
information space. From their different interests various roles in the task
can result as described later in Section 5.1.6. Since collaborative tasks
play a central role in knowledge work, the Nepomuk task management
must handle them. The central role plays the task owner (cf. Section
5.1.6.8) of the collaborative task who can invite other executors (cf.
Section 5.1.6.9) and takes the responsibility for the execution of the task.

There is no principle difference between individual and collaborative tasks
so that a transition from one type to the other is always possible and
only depends on the specified co-workers, i.e., a task only becomes
collaborative by the invitation of additional executors but does not
possess a different structure.

5.1.3.3 Context-free versus Context-dependent Goals

The context-free (synonym context-independent) goal can be used by
the PTM to detect specialisations of task patterns in addition to providing
user guidance hints during task planning and execution on the intended

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 43

goal of the task. For example, should the user update the context-free
goal from “capacity/effort planning” to “capacity/effort planning for EU
projects”, the system may recommend to the user to introduce a new
task pattern as a subclass of the original task pattern. Alternatively, the
PTM may suggest a completely new class of task patterns.

Whereas the task title and goal description are context-dependent and
will differ from task to task e.g. “capacity/effort planning for WP3,
Nepomuk project, Year 2”, the generic goal is context-free and conveys
the generic goal of the task, e.g., “capacity/effort planning”. For ad hoc
tasks (those not derived from a task pattern), the context-dependent
task goal may be used as an initial approximation for the context-free
goal. During task pattern creation, the system will copy the context-
dependent goal and suggest to the task pattern creator to generalise the
goal description by removing context-specific information. Furthermore,
statistical information collected across all task patterns in a given task
pattern hierarchy may provide additional insights on the needs and
behaviour of users in different situations.

5.1.4. Task Relations

We can connect tasks in various ways. The most prominent task relation
is the sub-task relation. It describes the relation between a super-
task and a sub-task where the sub-task encapsulates a part of super-
task that can be executed independently. This sub-task can then be
delegated to other users for execution. This and other relations provide
connections between different tasks that support the exchange of
information and resources.

However, there can also be other relations beside the sub-task relation.
For example, relations can be introduced to enable the mutual exchange
of information between two tasks, which are actually independent.

5.1.4.1 Sub-task

A sub-task is an independent task, which refers to another (requesting)
task via a sub-task relation, i.e., this means that its execution is required
in order to fulfil the execution of the requesting task. The execution of a
sub-task can thus be considered as part of the execution of the
requesting task. Nevertheless the execution of the requesting task does
not necessarily depend on the sub-task, e.g., in the case that the sub-
task only provided helpful but not mandatory support. However, in
general the task will depend on the contained sub-tasks. Therefore, the
execution of a task should generally only be accomplished when all sub-
tasks are executed (however, the sum of all sub-tasks does not represent
the complete task since this can include additional activities). If users
finish requesting tasks when some of the sub-tasks are not yet
completed they get a warning message and they have to decide whether
they nevertheless want to complete the task. If they do so messages are
sent to the responsible persons for the still open sub-tasks which inform
them about this. They are no longer obliged to the requester and can
continue the task under their own supervision or close it, too.

The owner of a sub-task always has a specific role with respect to the
requesting task, called delegate. Section 5.1.6.7 describes this role. The
corresponding role of the owner of the requesting task is called
requester and described in Section 5.1.6.3. Obviously, the requesting
task becomes a super-task for the delegated task.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 44

A sub-task has to be described formally by a title, description,
dependencies, etc. and must be initiated to be executed. Initiation means
that a request for executing this sub-task is sent to another user. This
can be done based on a suggestion by the executor or by other services.
After an addressee of the sub-task has been identified, a mail is sent to
this person who has to decide whether he or she accepts the request. In
case of a rejection, a new addressee must be identified whereas in case
of an acceptance a task is created in the addressee's PTM. From the
addressee's point of view, the original task executor appears as task
requester while the addressee becomes the task executor of the newly
created task. The role of the task requester includes the supervision of
the executor's processing but his or her view is restricted to those
aspects only that are required for the supervision. In principle, the
proceeding is the same whether the executor of a sub-task is identical to
the requester or not. Even if the requesters execute their sub-tasks
themselves, they get new tasks in their Task Management system for this
execution.

Although a sub-task depends on the super-task regarding the result and
the agreed deadlines, the execution of a sub-task is mainly independent
of any other task since the owner of a task can freely decide on how to
do the work (autonomy of tasks). The requester only gets insight into
the sub-task as this is necessary for the execution of his or her own task,
e.g., with respect to time planning. This results in two different
perspectives. On the one hand, there is the view of those people who
actually work on the task. They have full access to all resources in the
task on which they rely. This includes all internal working documents that
are not destined for task output. This is called the internal perspective
into the task. On the other hand, we have the perspective of an external
controller who has to decide on the progress that the task makes and the
output that it produces. We call this the external perspective onto a
task. In this context, we also talk about the common information
space of a task. It consists of all information that is necessary to
perform the task and is therefore accessible by the task executors. Thus,
the common information is part of the internal perspective.

5.1.4.2 Task Hierarchies and Processes

Processes appear in the Nepomuk task management only dynamically as
hierarchies of tasks connected by sub-task-relations. The processes are
not derived from process models except for the fact that task patterns
provide local, i.e., related to an individual task, guidance which sub-tasks
might be appropriate for a certain type of task. However, the respective
sub-tasks are completely free in the choice of own task patterns, i.e.,
independently of the fact which task patterns the superior task has
applied.

If we consider the structure that results by the connection of tasks via
sub-task-relations we find a task hierarchy resulting from the task and
their respective sub-tasks. They represent the division of work resulting
from delegation. Nevertheless the tasks in these hierarchies can be
connected to arbitrary other tasks via additional relations, which,
however, do not determine the primary work process.

A certain exception of this strict hierarchical concept is the case that a
task is defined as joint sub-task of two different tasks, i.e., it is in a
sub-task relation with two requesting tasks. However, such joint sub-
tasks only appear occasionally. The reason to form a joint sub-task could
be that two tasks contain a common unit of work, e.g., an investigation

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 45

that is relevant for both of them. Then they can agree on a joint sub-task
to perform the common work together. The responsibility towards the
sub-tasks, however, remains an individual one. This means that it is
possible that the result of the sub-task is accepted by the first requesting
task but rejected by the second. In this case, the task would be ongoing
until the last acceptance arrives.

5.1.5. Task Patterns

A central concept of the Nepomuk Task Management will be that of Task
Patterns. Task Patterns describe a kind of active task templates that
provide information that helps users to organize their own task. A task
pattern can be regarded as an abstraction of a class of similar cases and
thus describes a kind of best practice for the execution of specific tasks.
In this respect, a task pattern can contain all kind of reusable information
resulting from cases. In particular, we distinguish static and dynamic
information provided by the task pattern. While the static information is
the same for all tasks using such a pattern, the dynamic information
varies with the task context. In the following, we will describe both
aspects in more detail. Regarding the distinction between individual and
collaborative tasks, we find no principle differences for task roles.
However, the task pattern can indicate whether the corresponding task is
individual or collaborative. To this end the task possesses a flag
which is mainly maintained in a hidden way. By default, the task is
individual but the flag is automatically changed to collaborative if further
more than one executor work on it.

5.1.5.1 Static Task Pattern Information

Like a task, a task pattern is related to a specific goal. The goal
description mainly helps users working on a specific task to identify a
task pattern that can support this task. It depends on the goal with
respect to which it is decided which information can be provided by a
task pattern. In the following, we will describe certain types of static
information that can be provided by a task pattern, even if not all of
them might be implemented in the Nepomuk Task Management:

1. Possible sub-tasks: Due to the goal, it might be unclear
whether a specific sub-task could be part of the task execution.
Therefore, a list of possible sub-tasks is provided to the user
from which the user can choose those that might appear as
appropriate for the current task.

2. Dependencies between sub-tasks: The pattern can provide
information about dependencies between sub-tasks. For
example, it might be necessary that a user can only start with
the booking of a business trip if the user has previously asked for
approval for this trip. Thus, the users are pointed to activities
that they otherwise might forget.

3. Decisions: Often similar tasks require similar decisions from
which different activities result. Workflow Management is aware
of this and thus decisions resulting in different activities are a
central aspect of workflows.

4. Completion measures: To which degree a task is completed
can depend on various factors. Often it depends on the type of
task what is applicable. Therefore, task patterns can provide

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 46

hints which measures might be helpful for a class of similar
tasks.

It is worth to mention that the task pattern only provides guidance and
does not prescribe a specific proceeding. Thus, it is an offering to the
user, who might take or omit this.

5.1.5.2 Dynamic Task Pattern Information

Beside the information described in Section 5.1.5.1, a task pattern can
also provide information that depends on the particular context of the
applying task. For example, this context is given by the goal description
of the task, specific input information or context information provided by
a calling task if the current task is a sub-task of this. Here the knowledge
is used that tasks, which apply the same pattern, should be rather similar
in their character. Therefore, we call them similar tasks in the
following. Such information can include:

1. Information objects: These can be provided by similar tasks if
their context has common aspects with the current task. For
example, a task pattern that provides travel information can be
used by tasks with different travel destinations. Tasks with more
or less the same travel destination can thus provide helpful
information beyond the actual pattern.

2. Statistical information: Due to the similarity of tasks it is also
possible to derive information about the estimated execution
time of a task. However, this can strongly depend on the
context, e.g., a travel to a nearby location by car will probably
have a completely different execution time as an air travel from
one continent to another. If the particular context is known, such
estimates can be determined in a much more reliable way.

To realize these services task patterns must store suitable information,
e.g., such about applying tasks, i.e., tasks that have used this pattern.
Based on this information, the task can determine all similar tasks and
offer the described information.

Dynamic task pattern aspects can be described as services that a task
pattern provides to support the user in planning and executing a task in a
very specific way.

5.1.5.3 Task Pattern Incorporation

After an appropriate task pattern has been identified for a given task the
data from the task patterns have to be transferred to the task. This
process is more than just a copy since there might be some specification
in the task already available so that a merge process is required. A
typical example for this situation is the goal description. Since the task
creation starts describing its goal, a goal description is always there. If a
task pattern also provides a goal description on a more abstract level, it
has to be included. Let us consider the following standard cases:

1. Goal description of task and task pattern will be merged into
one goal description. To this end, the pattern goal description is
added at the beginning of the already existing goal description of
the task.

2. Sub-tasks, dependencies, and decisions from the task
pattern will be added to the already existing data of the task.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 47

In general, the assignment of a task pattern should always be the first
step. There are two possible situations in which the user defines data
that otherwise should be provided by the task pattern: (1) a suitable task
pattern is not available and the user has to describe the task without any
help; (2) the user has not yet looked for a task pattern but wants to keep
some information for further use. In the latter case, a merge with a later
added task pattern must be possible. However, this merging of tasks with
respect to more complex data is difficult and Nepomuk task management
will not support it. Therefore, the users should get a short warning if they
create the first sub-task without using a pattern.

5.1.6. Task Roles

According to the different activities that are related to a task we have to
distinguish different task roles where a task role characterises a specific
perspective towards a task which again is related to different required
functionalities and permissions. Persons involved in a task instance take
one of these roles. Tasks represent encapsulated units of work and as
such, they possess an internal view and an external view. The internal
view is characterised by the actual work towards the task goal while the
external view refers to all activities that are related to the outcome of the
task but without interference. Internal und external views are
consequences of the autonomy of tasks.

Another aspect that we address, when we distinguish between internal
and external view, is that they can connected these views to specific
access rights that are handled at two different levels. Referring to the
external view, we regard a task as an information object among others in
the PIMO. This means that we have to handle the permissions related to
this view in a universal Nepomuk context. In contrast to this, the
permissions related to the internal view are explicitly task model specific
and therefore we must handle them within the task management system.

In the following, we will present the main task roles. They appear with
respect to different groups of functionalities and permissions. Table 5.1
gives an overview of the existing task roles:

Internal Views External View
Attribute

 wrt. sub-tasks involved not involved

Controlling
Roles Task Owner Controller -

Viewing
Roles

Internal
Observer

Requester
External
Observer Analyst

Providing
Roles Executor Delegate Contributor Creator

Table 5.1: Task roles.

In Table 6.2 we have categorized the considered roles according to
different criteria. There are two different kinds of views, internal and
external, as introduced before. Roles that belong to the former have
access to the internal information space whereas those that belong to the
latter only get information that is provided for controlling purposes or
delivered by the task owner. With respect to the external view we can
distinguish two further kinds of roles. Some external roles are to a certain
degree involved in the particular activities since they depend on or are

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 48

interested in the results of the tasks. The external roles that are not
involved in the task contents are those roles that are concerned with the
organization of processes (analyst) or roles who are mere initiators of
tasks without further interest in them (creator). Regarding the internal
roles we also distinguish two types but here the criterion is whether the
role originates from a delegation process encompassing sub-tasks
(requester, delegate) or whether they are used in a general sense (task
owner, internal observer, executor). Actually, the former roles do not
describe specific right but emphasize the inclusion in a sub-task relation.

Regarding the attributed permissions, we have three degrees of access
rights. The most extensive permissions are related to controlling roles,
either internal (task owner) or external (control). However, this grouping
does not imply that task owner and controller have comparable
permissions. It only says that within the column the permissions of these
roles are the most extended. Slightly weaker permissions belong to the
viewing role. The owners of these roles get access to the respective
information but in a more passive way, i.e., without controlling
opportunities. Finally, providing roles only have a very limited access to
the respective information space. The intention of these roles is to give
access to specific information so that the respective users only get the
information that is necessary to do this.

5.1.6.1 Creator (External View)

The creator describes the role of a person who creates a task,
independently of the fact how this person is involved in its execution.
This means that later the creators can become either task owner, if they
take care of its execution themselves, or controllers, if they leave the
execution to someone else but are still interested in the outcome, or
none of these, if they only refer to an event from which a task results but
they are no longer interested in it.

5.1.6.2 Controller (External View)

A controller is the role of a person who monitors the proceeding of a task
from outside and interferes with it if this is necessary but is not involved
in its execution. A typical example for a controller is a senior manager
who delegates a task to another employee and only asks for the status of
the task and its results.

5.1.6.3 Requester (External View)

A requester is a task creator who afterwards becomes a controller. This
role usually results from a sub-task relation in which the owner of a task
requests the execution of a sub-task, which is necessary for the
execution of the requesting task. In this case, the owner of the
requesting task becomes a requester for the sub-task.

In contrast to the creator role, however, the requester can change. For
example, if a senior manager is owner for the task Budget Planning and
requests the sub-task Identification of Stakeholders, he or she becomes
the requester of the sub-task. However, if the senior manager delegates
the task Budget Planning to his or her assistant, then the assistant
becomes the requester even if the senior manager remains the creator.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 49

5.1.6.4 Contributor (External View)

A contributor describes the role of a person who delivers resources or
information to a task without being directly involved in it, i.e., the
contributor is person has no access to internal information space of the
task. An example of a contributor is the owner of a sub-task who takes
care for the delivery of some outcome necessary for the requesting task
without being involved in it.

Even if the owner of a sub-task is the most typical example of a
contributor, it is possible that contributions can also result from
completely different tasks, e.g., such which are only related to the
current task and where the delivery is not required.

5.1.6.5 Analyst (External View)

Analyst is the role of a person who is not interested in the actual
execution and the results of a task but who, for example, monitors the
task to get reusable information or to analyse the cause of problems that
occurred during the execution of the task. A typical example of an
analyst is a process engineer who looks at a series of actual processes
and their tasks to find out whether and which structures they can
improve.

5.1.6.6 External Observer (External View)

The role of an observer is similar to that of an analyst; however, in this
case the respective person is interested in particular results of the task.
For example, the owner of a task knows that another task is working on
a similar topic and is preparing a report. Just in case, that this report
might be relevant for the own task the task owner wants to get informed
about the report resulting form the other task. In this case, he or she
becomes an observer of the task.

5.1.6.7 Delegate (External View)

The delegate describes the role of a person who receives a Task for
execution.

5.1.6.8 Task Owner (Internal View)

Task Owner is the role of a person who is in charge for the successful
completion and coordination of a task. The task owner has complete
access to all information and resources of the task and supervises its
execution. Moreover, the task owner is the contact person for persons in
roles related to external views. This means that the task owner receives
external messages and distributes them internally or delivers results to
the outside world. Furthermore, he or she requests external information
or resources that are required for the execution of the task.

The task owner can transfer the actual work on a task to an executor. In
this case, the task owner remains controller for the task while the role of
the executor is transferred to the addressee. If the task owner remains
executor, the task becomes a collaborative task since there is more than
one person working on it.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 50

5.1.6.9 Executor (Internal View)

Executor is the role of a person who works together with the task owner
on the execution of the task but has not external obligations or
possibilities of interference. The executor has access to the internal
workspace of the task.

5.1.6.10 Internal Observer (Internal View)

In contrast to the external observer, the internal observer can access the
internal information space although he or she is not involved in the
execution of the task.

5.1.7. Task States – Status Information on Tasks

The goal of the task state model (as depicted in Figure 5.2) is to
distinguish phases of a task that require phase-specific activity by the
different users involved in this task according to their role. This can be
accompanied by provision of specific functionality by the environment or
by permissions granted to the users involved. To some respect the task
states correspond to the action phases introduced in Section 5.1.2, e.g.,
the status completed in Figure 5.2 requires the evaluation of the task
related action by the controller. The aim of describing task states is to
ensure a coordinated processing.

New Running

Finalized

TerminatedSuspended

Archived

execute
finish
work

Completed

Interrupt /
resume

approve

abort

abort
archive

approve

Figure 5.2: Overview of Nepomuk task states.

The Nepomuk task states are designed with the following requirements:

• Simplicity – The Nepomuk task state model is an extension of the
minimalist model proposed by Grebner (2006), incorporating only
one new state – Archived – borrowed from Caramba (Dustdar
2004). This reduces the user’s cognitive load and enhances
usability.

• Support of task roles – The model must support the task roles
described in Section 5.1.6. Furthermore, the model should
elucidate the relationship between task states and task roles
especially in respect of state transitions.

• Execution transfer – Unlike existing models, the Nepomuk task
state model should support the transfer of running tasks. A
typical example is the transfer of a task to a co-worker when the
task requirements are better defined e.g. the co-worker has
better-suited expertise or the necessary resources (more time).

In particular, the state is visible to controllers to give them information
about the progress of the task.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 51

A task that is created starts initially in the state new. This means that
the task formally exists and it is possible to add information to it but
there is not yet a person assigned who has started to work on it.

The new task remains in the PTM of the creator until he or she initiates
the task by assigning an executor. When a potential executor has
accepted the task the state changes to running.

If the work on the task is interrupted due to external factor, e.g., if the
owner is waiting for some result, and cannot work on the task the state
changes to suspended. This means that the owner waits for a specific
event that enables him or her to continue. When this event occurs, the
state changes to running again and the owner receives a notification of
it.

If the owner of the task decides that the goal of the task is achieved, the
state changes to completed. Controllers are involved in this event, i.e.
the controllers are notified about this event and can check the
deliverables of the task. If one controller rejects the results, the state
changes to running again.

Likewise, if a task is stopped before its regular end is reached, e.g.,
before the required output is provided, the state changes to
terminated. Under certain conditions, the task can then be resumed
and changes to the state running again.

When the last controller has accepted the results of the task, the state
changes to finalized. This means that all involved parties agree that the
work on the task is completed. Now the task can be archived.

Table 5.2: Nepomuk task state transitions.

Table 5.2 describes the Nepomuk task state transitions and the
respective task functions.

Transition
name

Target
task state

Task function Description of task transition

Create New Create task A new task or sub-task is created with the
minimal number of mandatory fields filled.

Execute Running Task planning

Accept task

Resume task

Task planning activities (including assignment
of executors, acceptance of task transfer
requests and resumption of suspended tasks)
transition the task state into the Running state.

Interrupt Suspended Suspend task Task executors can suspend the task at any
time, say due to task dependencies or
coordination with task contributors.

Finish Completed Finish task A task is marked as completed if its goal is
achieved and all required outputs have been
produced.

Abort Terminated Terminate task A task is terminated if it is no longer required
or its goals is no longer relevant.

Approve Finalized Approve A task is marked as finalized if its Controllers
have accepted the task outcome or agreed that
the task should be terminated.

Archive Archived Create or
update task
pattern

A task can be optionally archived by
transferring selected work experience aspects
to a task pattern.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 52

5.2. Task Functions

In this section, we describe the operations that are related to tasks, task
patterns and other entities introduced before.

5.2.1. Core Functions

The core functionality comprises all functions that are related to the basic
features of a collaborative task management, i.e., a task management
that essentially supports the joint and coordinated work of different users
on related tasks. This includes the creation, planning and execution of
tasks as well as task delegation and transfer. The following subsections
describe the details.

5.2.1.1 Task Creation

Every user can create new tasks. This can be done directly from the PTM
or from a suitable application that provided a plug-in for the task
management. If a user creates a task then the following steps are
mandatory:

1. Provide a task title that allows distinguishing the task from
others in a task list.

2. Provide a task goal that is to be described by a text and might
be supplemented by an assignment to a specific task category
provided by a task goal hierarchy. The task goal is the minimal
information required to provide some semantic information about
the task. For example, the system uses the description of the
task goal to identify a task pattern appropriately, if no other
information is available. The system can support this by
providing a goal hierarchy, from which the user can choose a
suitable abstract goal class.

3. Provide an owner for the task. Every task must possess a
responsible person who takes care for the processing of the task.
As initial task owner, the creator of a task is assumed.

Further information might be helpful but is not required in order to keep
the handling of task simple, e.g., if the user only wants to create a
reminder for work to be done and plans to give further description later.

5.2.1.2 Task Planning

As we have seen before, planning is a central aspect of activities and
tasks. Nepomuk tasks support planning in the following aspects:

1. Describe sub-tasks as steps in the current task that might be
executed by other users. As an initial specification of a sub-task a
goal is to be provided that later becomes part of the goal for the
task that might result from this sub-task.

2. Furthermore, it is possible to describe dependencies between
sub-tasks. These dependencies can be related to the order in
which sub-tasks are to be executed but they can also include
more general aspect, e.g., regarding a notification for a sub-task
if another sub-task is completed or a transfer of its results.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 53

3. The planning can also include the output that is to be produced.
If a task originates from another task as sub-task, it might be
that the output description is provided by the requesting task
and cannot be planned freely. However, it is always possible to
plan additional output.

5.2.1.3 Task Transmission

If a task is to be transferred to another user, a negotiation process has to
be started in which the addressee is asked whether he or she accepts the
task. The transfer is not completed before this addressee has sent the
acceptance to the sender. This also includes the transfer of sub-tasks,
called delegation, since these are initially assigned to the owner of the
superior task. Task transfer means that the responsibility for the task at
hand is completely transferred to the addressee. In the case of a sub-
task transfer, only the controller role stays with the requester as the
originally responsible person.

In contrast to the task transfer, the task invitation does not include the
transfer of the responsibility but only gives other users the possibility to
work on the task. In this case, the task owner stays the same but an
additional user is included in the task as executor. The originally
responsible person remains responsible towards controllers and other
external parties. Both task transfer and task invitation we call task
transmission.

5.2.1.4 Task Negotiation via Email

The transfer of tasks as well as the invitation to tasks requires a
negotiation between the requesting party and the addressee. For
example it must be clarified which input and output is required, whether
the addressee has time and the required competency to work on the task
etc. This is related to a communication process that should be supported
by email. The requester starts the process by initiating the generation of
a standardized email, which asks the addressee whether he or she is
willing to accept the task as task owner or executors. In the same way,
the answer to the requesting email should be more or less automatically
generated. The input that is required for the addressee to decide on the
acceptance can be made available to the addressee by the same email.
Finally, an acceptance by the addressee must automatically trigger a
transfer or generation of the task in the addressee’s PTM so that no
additional activity by the two parties is necessary in this respect.

5.2.1.5 Task Execution

The execution of a task cannot be clearly distinguished from the planning
phase, since generally continuous updates of the plan are necessary. The
execution is supported by the task description that provides
information on how to proceed.

A central part of the execution is the delegation of sub-tasks. However,
the execution of a task often goes beyond the execution sub-tasks since
coordination efforts are generally required.

The task execution also includes administrative activities such as the
invitation of executors or external observers. However, the PTM has to be

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 54

built in such a way that these administrative activities are reduced to a
minimum.

The execution also encompasses decision-making. Since fundamental
decisions essentially influence the proceeding of a task, it is important to
protocol them in a particular way.

All activities related to the execution will be recorded. On the one hand,
this is done in order to give the task owner a full overview of what
happens in a task. On the other hand, the recording provides material
that later helps users find information on how to proceed with their own
tasks. The next section provides details.

5.2.1.6 Task History

All activities related to a task are stored in records and build up the task
history. The task records are used to protocol the execution of a task
beyond the completion of sub-tasks. Task records are also to be used to
protocol problems that occur during the task execution. Record types
such as ‘problem’ are used to give a better semantic specification of
records. Recording of the task activities is a fundamental precondition for
a successful later reuse of the experience gained in the course of the
task. The records contain structured as well as unstructured content,
e.g., descriptions of specific problems that appear during the execution
of a task. The records also serve as a protocol of the task that later helps
a user to provide evidence for what happened during the task.

An overview of the kind of information that is to be recorded is compiled
in the following list:

1. Changes of task states;

2. Task transfers;

3. Invitation of executors, their acceptance, and their possible
withdrawal from the task. This also includes role changes;

4. Decisions that have been taken in the task. Here the record
serves as protocol. A decision record also includes the persons
who have taken this decision and the alternatives that were
available.

5. Execution times, which a user can specify manually or can be
directly extracted from calendars. This entry might also include a
description of what has been done in a short form;

6. Problems that occurred during the execution and the measures
that have been taken to resolve them;

7. Delegation of sub-tasks. This also includes the recording of the
completion of sub-tasks;

8. Planning data that have been changed such as the creation or
deletion of sub-tasks and changes of dependencies. In particular
this also includes the case that planning data are copied from a
task pattern;

9. Emails that have been sent or arrived and that are related to
the task;

10. Input and output that have been provided or delivered.

Whether there is a description of entries in a formal way or in textual
form should be open for extension as well as the entry types. The given
list only provided an overview of possible tapes. All entries require

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 55

additional information that is the same, independently of the particular
type of entry:

1. User who made this entry;

2. Timestamp of the entry;

Most of the information should be recorded automatically without any
user interaction. However, for some information, e.g., the description of
problems, it seems to be preferable that the user provides the contents.

The task owner must have access to the task history and needs a
particular monitor for this. The records are maintained as a list, the
viewing of which can be supported by different filters. Moreover, it
should be possible for a user to relate certain records to others if these
are connected by their topic. This allows users to go back in their task
history and find the direct line of activity from which a record results. The
PTM should support relations between connected records, e.g., the
planning of a sub-task and its execution.

5.2.1.7 Task Tracking

Users who have the role of a controller (cf. Section 5.1.6.2 need
functionality to investigate the state of the task that they control. In
particular, this concerns the case that they are requesters (cf. Section
5.1.6.3) and rely on the timely finalization of a sub-task. In order to
observe critical situations, which might affect their own work, as soon as
possible it is important to monitor continuously the proceeding of such
tasks. The Nepomuk task management must provide the required
functionality.

Unfortunately, it is a rather complicated problem to identify upcoming
problems in an early stage. In the worst case the problem is only
recognized when the result is not delivered at the projected due date.
Such situations should be avoided if possible. The following indicators
might give some insight on the status:

1. Completion of sub-tasks considering their number and
different complexity

2. Completion rate, if the task owner can provide this. This is
particular important if the task does not include any sub-tasks.
However, here the problem is that it is often difficult to specify to
which degree a task is already completed.

3. Execution rate is a quantitative measure for the completion of
the task based on estimated execution time. This requires that
such an estimate is available and that the task owner accurately
records the time he or she worked on the task.

4. Completed deliverables, if several deliverables are part of the
task output, also indicate the completion state of a task and
should be provided if possible.

A single standard cannot describe to which degree a task is actually
completed, but this strongly depends on the kind of task. Therefore, we
need a variety of possible indicators.

The user has to specify which of these indicators might be applicable to a
specific task but task patterns can also provide suggestions, since similar
tasks usually allow for similar measures.

The monitoring surface can also include functionalities to communicate
directly to the respective task owner if there are warning indicators. For

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 56

example, a message could be created that summarises the status from
the controller’s perspective including some remarks and asking the task
owner for further information.

5.2.2. Task Pattern Handling

We consider task patterns as the central medium to distribute work
experience on tasks. Therefore, one of the central questions for the
Nepomuk task management concerns the creation and update of task
patterns out of the daily work process. Here the personal as well as the
public use of patterns should be supported and both in a rather similar
way. The general advantage of the usage of task patterns instead of
actual task as templates has been explained in (Riss et al., 2006).

In the following, we only describe the principle approach of task pattern
handling. The particular details are open to further user studies that will
be part of the project and partially carried out in work package 10000.

Besides the possibility of creating patterns from scratch, patterns will
usually originate from existing task instances. Since these instances also
contain information specific to the situation, an abstraction process is
necessary that transforms the task contents into generally applicable task
patterns. This abstraction process is also necessary to eliminate privacy
problems resulting from the fact that task content contains information
that is closely relating to individual users. For example, during the
abstraction process it is possible to substitute a concrete person involved
in a task by its role. There are different kinds of abstraction, which are
listed below:

• Remove attributes if they are not generally relevant

• Set attribute values to default if required

• Exchange concepts that might be referring to the particular
task context and should be replaced by terms that are more
general. Here the system can support users. In particular, the
relation between general and specific terms should be stored for
other cases to support the identification of patterns.

It should also be possible to bring several task instances together and
derive a common task pattern from them, e.g., a conference journey task
for which a flight was booked and a conference journey task for which a
train ticked was bought.

5.2.2.1 Task Pattern Creation

The creation of task patterns should emanate from existing cases. This
means that an executed task is taken and a process is started at the end
of which a task pattern is created. This requires an abstraction process in
which context dependent and personal parts of the task description are
removed or generalized. The user must be supported by the system in
this rather difficult process. For example, it must be clarified in advance
which task attributes are relevant for the template and which have to be
adapted by the user during the pattern creation. The relevant attributes
have to be displayed to the user so that he or she can check their
contents and adapt them if necessary. The task management system
must keep the effort for the users as minimal as possible in order to
encourage them to create task patterns even for personal purpose. We

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 57

can see the creation of personal task patterns as the first step public task
patterns that are generally available and used.

5.2.2.2 Task Pattern Update

The update of task patterns works according to similar principles as for
the creation, i.e., the user is encouraged to provide information in an
unobtrusive way supported by the Nepomuk task management. The
update takes place if the users has applied a specific task pattern to his
or her task and has deviated from the pattern in some way. The task
management system identifies these deviations and after the completion
of the task the user is asked whether these deviations are contingent,
e.g., due to specific circumstances, or systematic, i.e., also relevant for
other users. In the latter case, the user is asked for further specification
of the introduced change in analogy to those for pattern creation. In this
way, the effort for the update is reduced to a minimum and does not
mean an inconvenient burden for the user.

5.2.2.3 Task Pattern Retrieval

An efficient usage of task patterns can only be established if it is possible
to find the appropriate task patterns for every task at hand. If a task
results from sub-task delegation, the situation is easier since there is
already a right task context provided by the requesting task. If a task is
created from scratch, there is usually only a task description and a formal
categorisation of the task available where the formal categorisation is the
best fit out of a limited numbers of possibilities.

Since it is not clear which information is generally available for the
identification of a task pattern it must be ensured that the pattern
identification can take place on the basis of minimal data. The minimum
of information that is available for every task is the goal description and
the work context of the task creator (even if the latter information can be
misleading due to contingent circumstances).

Another support to be provided is a classification scheme of tasks that is
provided to the user to support the identification of patterns. Based on
this scheme, it is possible to provide at least a rough categorisation of
tasks that helps to avoid ambiguities that might arise from goal
descriptions.

5.2.3. Time Management

Besides the handling of tasks, sub-tasks, and patterns, the time
management of tasks is another area that requires support. The general
problem is that knowledge workers usually have more tasks than they
can actually accomplish. Therefore, it is important to ensure that at least
the important tasks are executed in a proper manner. An efficient
prioritization of tasks is crucial in this respect. However, it is also
important that the users have enough time for their tasks. This requires
an accurate planning that can be supported by the system. It is central
for this planning that the estimates for the execution time and the
administration of the due date are as accurate as possible. If these data
are available, the system can check whether the remaining time is
sufficient to accomplish all tasks in time. In the end, time management
and prioritization of tasks must go hand in hand. Furthermore, this

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 58

requires the support of notification mechanisms and schemes to keep the
user abreast with, say, approaching deadlines as well as task status
changes. Therefore, they will be treated jointly in the Nepomuk task
management.

If the system recognizes a situation in which it seems to be improbable
that the users can accomplish all tasks, it informs the user about this fact
providing a compilation of the open task. Then the user has to decide
how to deal with the situation. For example, she can delegate open tasks
to other users or postpone certain tasks informing the respective
requester. However, it is also possible tasks are concluded as pending,
i.e., the due date is cancelled since the task is only used as a reminder.

Beside tasks with a fixed time slot there are also two other types of tasks
that we consider. On the one hand, we have the tasks that require
immediate processing when they arrive at the addressee. For example,
this can be the case if a system breaks down and must be fixed at once.
In this case, other tasks must be postponed if their schedule collides with
the incoming task. On the other hand, we have tasks that cannot be
planned in a concise manner. For example, I plan to read a paper. Also
these tasks need some kind of time management since at a certain point
of time the user has to rethink this task whether it is still relevant or
whether it can be deleted or archived. The consideration of these open
tasks should be included in the task management as a special
management task, which might be executed regularly once a week.
Perhaps there might also be other regular tasks like team meetings that
are usually handled by the calendar functionality.

Regarding tasks for which time slots are reserved we have to distinguish
two kinds. First, we have tasks that cannot be shifted freely, e.g., if other
users are involved (collaborative tasks) or if the due date is reached.
Second, we have task for which a timeslot is reserved but which can also
be executed later (or earlier) without coordination efforts. The time
management support can shift the latter tasks if other tasks have to be
executed immediately.

5.2.4. Co-Tasks

Sub-tasks of the same super-task can be regarded as co-tasks, analogous
to co-hyponyms for hyponyms of the same hypernym. Those tasks are
siblings to each other. By means of ontology, learning it is possible to
derive such siblings. Hereby only the name of the task is regarded. For a
given task name (or a set of task), other sibling words to this task name
can be retrieved by the approach described in (Brunzel et al. 2006a,
Brunzel et al. 2006b, Brunzel et al. 2007). This method is worth to
consider in giving help in structuring ones work into sub-tasks, especially
if only a rather empty task pattern repository is available. As ontology
learning is supposed to overcome the shortage of explicit semantics, this
approach should help to give initial hints for explicit tasks.

5.3. Task Concept Requirements Matrix

This section shows that the core task management requirements are met
by the conceptual model and functionality described in this section.

Section 4.2 details the consolidated core task management requirements
collated from the case studies WP8000-WP11000. Table 5.3 maps these

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 59

core requirements to the conceptual model and functionality described in
Sections 5.1 to 5.2 above.

Req-# Description Conceptual
model section

1. Every user can create new tasks Section 5.2.1.1

2. Task decomposition – Define sub-tasks

Sub-task dependencies – Create relationships between
sub-tasks within a task

Define input and output of tasks

Section 5.1.4
& 5.2.1.2

3. Ad-hoc task planning and flexible changes Section 5.1.2,
5.1.3, 5.2.1.2

4. Support users in structuring their email inbox as well as
the creation of new emails.

Section 5.2.1.4

5. The transfer of tasks as well as the invitation to tasks
requires a negotiation between the requesting party and the
addressee.

Section
5.1.3.2,
5.2.1.3

6. Integrate personal as well as group information Section 5.1.1,
5.1.3.1,
5.2.1.2

7. Task patterns as the central medium to distribute work
experience on tasks

Section 5.1.5,
5.2.2

8. Task pattern creation should emanate from existing
cases.

Section 5.2.2.1

9. Task pattern update works according to similar principles
as for the creation

Section 5.2.2.2

10. Efficient prioritization of tasks Section 5.2.3

11. Calendar support for tasks Section 5.2.3

12. Tracking of tasks, experiments, projects, people, and the
relationships between them

Section 5.1.4,
5.2.1.7

13. For the execution of tasks in time it is necessary that the
supervisor of a task gets enough information about the
status of delegated work.

Section 5.1.7,
5.2.1.7

14. For each modification on the tag level, it is needed to track
the audit trail of the changes

Section 5.2.1.6

15. Make task information accessible offline in case of no
online access to the task management system.

Section 5.1.1,
5.1.3.1

Table 5.3: Relation between core requirements and conceptual model.

5.4. Security

Security and privacy issues play a significant role for the task
management. Therefore, we will also include security related attributes in
our task management model. In general, the Nepomuk task management
will handle security issue in a consistent way with other objects of the
Nepomuk system so that we must deal with security and privacy issues
on a more general level, beyond the restrictions of WP3. Therefore, we
only mention the issue at this point without going into further details.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 60

6. Task Management Model

In this section, we describe the ontology that reflects the representation
of the concepts described in Section 5, the Task Model Ontology (TMO).

We outline the design principles for the task management model. Then
we position the ontology in the context of the Nepomuk ontology
pyramid. Afterwards we describe the details of the classes and relations,
which constitute the TMO.

6.1. Design Principle: Data Model vs. Ontology

Modelling a user's task results in a set of attributes and values, which
comprise the individual task management model. The TMO contains the
definitions of the classes and relations, which are used to build this
model, that is: Any object described in a task management model must
be an instance of a class from the task model ontology.

Thus the TMO defines the complete language (and thus the possible
range of reality which can be described) to be used to model task-related
information on the Nepomuk Social Semantic Desktop (SSD).

We have to consider that this task model should not only support existing
task management approaches but more generally should support the
family of task management software that can be connected to the SSD.
This brings up the issue of balancing the trade-off between supporting
the desired functionality and avoiding biases towards a particular case.
This is a generally known issue on engineering ontologies (Spyns et al.
2002). The aim is to create a model, which can accommodate the
majority of information handled by task management software.

The explicit definition of the TMO makes transparent the data structures
used within the task models. Furthermore, the TMO is fully extensible.
That is, every user who sees the need to expand the modelling
capabilities is free to add new derived classes to the ontology on the
individual desktop. While this will allow the introduction of new and
additional representations, every system adhering to TMO as described
here will still be able to perform the functionalities described in this
document on the resulting representations.

To represent the task model ontology we employ the Nepomuk
Representation Language (NRL). NRL is based on RDFS and introduces
additional elements, named graphs and view definitions being the most
prominent extensions. The TMO, however, currently does not use these
extensions, but only relies on the RDFS modelling and the extensions
implemented in the Protégé ontology editor.

6.2. The Nepomuk TMO in the Context of Nepomuk Ontologies

In this section, we will explain the relation between the TMO and other
ontologies within Nepomuk.

The TMO will not exist in isolation. It will co-exist together with other
ontologies on the SSD. Since this is the case, the task ontologies reuse
concepts, which are to be modelled elsewhere. Figure 6.1 shows the
Semantic Desktop Ontologies Pyramid. This architecture arranges a
number of ontologies wrt. their sharing scope and their degree of

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 61

stability: The representational layer provides concepts which are to be
used by anybody who models an entity in a NEPOMUK semantic desktop
– those concepts (the NRL in particular) must thus exhibit both a large
sharing scope and maximum stability. At the other end of the pyramid,
Nepomuk forsees the generation and management of the so called
Personal Information Model Ontology (PIMO), cf. Sauermann (2006).
Here the individual user is free to represent whatever concept seems
useful in the context of a personal desktop; strict formality or sharing
with others are not necessarily requested here. A PIMO rather reflects
the personal view that a SSD user has upon the world, i.e. the domain.
Consequently, such concepts will exhibit low sharing scope and low
stability, as the user may modify at whim.
TMO

Figure 6.1: Semantic Desktop Ontology Pyramid (NRL 2006).

From the mentioned ontologies in Figure 6.1, PIMO and NRL are relevant
from a task management point-of-view. As already stated, the TMO like
all other Nepomuk ontologies will be represented in NRL.

The TMO is a natural part of the PIMO, as the user is free to represent,
document and annotate task-like information in any way which seems
suitable. However, some of our conceptualizations go beyond the
personal interest. In particular, all concepts related to communication
and exchange result in broad sharing and require higher stability.
Application programmers may build on such concepts in order to realize
the exchange-oriented functionalities. In summary, TMO is part of the
domain models and overlaps with the PIMO.

The specification of the TMO makes use of a number of concepts which
are supposed to reside within the PIMO, e.g. Person. For the explanation
of the TMO, we take their existence within the PIMO for granted. The
details of how such a concept is modelled are explained elsewhere.

TMO

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 62

6.3. The Nepomuk Task Model Ontology

In the following, we will describe the TMO. We will provide a textual
description of the most relevant aspects of the TMO. The formal
modelling was performed with Protégé 3.2 in such a way to be
compatible with the Nepomuk NRL (NRL 2006 and Sintek et al. 2006)
semantic model.

This section includes several diagrams where the conceptualization of the
task model is visualised. The diagrams focus on certain aspects of the
task model. They enable the reader to view a part of the
conceptualization directly in this document, without the need for
switching to Protégé editor to see the concrete model. The Protégé plug-
in Ontoviz (Sintek 2001) generates the diagrams. Not every piece of
information visible in the diagrams is explained in detail in the text as the
diagrams have a documentary character.

Section 6.3.1 will be devoted to the task concept itself. The subsequent
sections will describe the model for task transmission. This is followed by
operations, which should be performed with and upon tasks.

Note on convention In the following sections, attributes are presented using the following
schema: [attributeName: attributeType]
minCardinality:maxCardinality. For example, the notation
[name:String]1:1 represents the attribute “name” having the type
String and it has mandatory to occur exactly one time. A * denotes an
arbitrary number of occurrences.

6.3.1. Task Model

This section is about how the task model was "implemented" as an
ontology. We will show classes as well as the attributes, which interlink
those classes. Section 6.3.1.1 will show the core attribute set which is
regarded as “core” to the task model. Then we show attributes and
classes, which are important for different topics.

The following table lists all attributes of the class NepomukTask and the
section where the attribute is explained.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 63

Attribute Name Reason for Existence of Attribute
(reference to sections if possible)

Section where Attribute is described

creationDateTime 5.2.3 Time Management 6.3.1.1 – Core Attributes

hasAbilityCarrierInvolvements 5.1.2. Activity / Action 6.3.1.3 - Task execution: Ability
Carriers

hasAttachments 5.1.3.1 Task Structure - information
units (IU) and resource units (RU)

6.3.1.4 - Attachments

hasContextDependentGoal 5.1.3.3 Context-free versus Context-
dependent Goals

6.3.1.1 – Core Attributes

hasContextIndependentGoal 5.1.3.3 Context-free versus Context-
dependent Goals

6.3.1.1 – Core Attributes

hasInvolvedPersons 5.1.6 Task Roles 6.3.1.2 - Person Involvements

hasLogEntries 5.2.1.6 Task History 6.3.1.7 - History

hasNotification 5.2.3 Time Management 6.3.1.5.3 – Notification by Reminders

hasTaskOrderingParadigms 5.2.3 Time Management 6.3.1.5.2 – Task Ordering Paradigms

hasTaskSources 5.2.2 Task Pattern Handling 6.3.1.6 – Task Source

hasPlanningAndTrackingInformation 5.2.3 - Time Management 6.3.1.5.1 - Planning and Tracking of
Time and Progress

hasTypeOrCategory 5.2.1.1 - Tasks are categorized in
order to identify task patterns (Section
5: formal/informal)

6.3.1.1 – Core Attributes

id 5.1.3. Task – Not explicitly mentioned
there, but there the task (e.g. the
goal) as such is introduced

6.3.1.1 – Core Attributes

name 5.1.3. Task – Not explicitly mentioned
there, but there the task (e.g. the
goal) as such is introduced

6.3.1.1 – Core Attributes

privacy 5.4. Security 6.3.1.1 – Core Attributes

state 5.1.7 Task States and 5.2.1.7 Task
Tracking

6.3.1.1 – Core Attributes

subTasks 5.1.4 Task Relations and 5.1.3.1 Task
Structure

6.3.1.8 Sub-tasks

superTasks 5.1.4 Task Relations and 5.1.3.1 Task
Structure

6.3.1.8 Sub-tasks

taskDescription 5.1.3. Task – Not explicitly mentioned
there, but there the task (e.g. the
goal) as such is introduced

6.3.1.1 – Core Attributes

Table 6.1: Attributes of the Class NepomukTask (alphabetical order) and
the section where the attributes are described

Additional aspects of the TMO are task dependencies, described in
Section 6.3.1.9 (motivated by Section 5.1.4.2), the transmission of task
and access rights described in Section 6.3.2 (motivated by Section
5.2.1.3) and task patterns described in Section 6.4 (motivated by Section
5.2.2).

6.3.1.1 Core Attributes

Core attributes represent the basic attributes of a task. There are only
few mandatory attributes, i.e. the attributes that are required for a task
at creation time. These are the automatically generated Task Identifier,
Creation Time and the Task Name. All other attributes are optional. Table
6.1 shows and describes the core attributes.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 64

Attribute Description

Task Identifier

[id: String]1:1

The Task Identifier allows a unique identification of a
task object within the range of all Nepomuk objects.

The Task Identifier is automatically generated during
the creation of a task. The generation of identifiers
(IDs) is a Nepomuk architecture issue
(WP2000/WP6000).

Creation Time

[creationDateTime:
DateTime]1:1

The time a task instance was initially created.

Task Name

[name: String]1:1

The Task Name helps the user to identify a task in a
list. It should be expressive enough to enable a
meaningful recognition. Details should be written in
the description attribute instead. A name attribute is
not allowed to contain line breaks.

Task Description

[taskDescription:
Description]0:1

The task description helps users to understand the
goal and the proceeding of a task. It can also describe
the context of a task. The task description is
composed at minimum of a summary of what is done
to reach the goal. The task description is the main
source for identifying related information, e.g.,
suitable patterns.

A Task Description can be either an informal,
described textual content (TextualDescription)
or it can be a more formally structured representation
(FormalDescription).

Technology considerations: Informal descriptions allow
for text similarity processing, a formal description
allows for applying case based similarity measures.

State

[state:Symbol]1:1

The task state describes the current state of the task
as described in Section 5.1.7.

Goals

[hasContextIndependentGoa
l: Description]0:1

[hasContextDependentGoal:
Description]0:1

It is possible to attach two different types of goals:
context dependent and context independent goals.

ContextIndependentGoal – Context-free goal of a
task – emanates from the task pattern and is stored
locally at the task. The task owner or executor does
typically not change this unless new types of related
problems or goals are identified.

ContextDependentGoal – Gives more (context-
aware) details in comparison to
ContextIndependentGoal, i.e. more information
that is related to the particular task, e.g. the travel
location in the example of the travel-booking task.

See Section 5.1.3.3 for further details.

Categories

[hasTypeOrCategory:
Activity]0:*

The categories depict a selection from a set of existing
“Activities” of the PIMO. Category herein means the
“type of the task, e.g. “Meeting” or “Conference
Journey”.

Privacy Status

[privacy: Symbol]1:1

Privacy Status serves for the separation between a
professional and a private purpose of a task. This
attribute provides with the values
“professional/private” a high-level separation of
privacy in terms of setting distribution and access
rights to other users for the task.

This separation may arise as a general Nepomuk issue
and may therefore be handled in conjunction with a
privacy preserving SSD architecture.

Table 6.1: Core Task Attributes.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 65

6.3.1.2 Person Involvements

The class Person_Involvement realizes the involvement of persons
with detailed roles on a NepomukTask and is motivated by Section 5.1.6.
Instances of the class Person_Involvement are attached to the
NepomukTask by the attribute named hasInvolvedPersons.
Person_Involvement consists of two attributes, a role depicted by an
instance of Person_Task_Role and an instance of the class Person.
This conceptualization is visualized in Figure 6.2.

Figure 6.2: Attachment of Persons, Roles are explicitly stated.

6.3.1.3 Task Execution: Ability Carriers

The execution of a task relies on certain abilities. The abstract concept of
Abilitiy_Carriers circumference all those more concrete concepts
of which one can think of while working on tasks. Using this abstract
class enables to substitute such Ability Carrier's in the process of
generating patterns from task instances and vice versa in the process of
instantiating task instances from patterns without violating the schema.

With this attribute, a series of ability carrying entities (Person, Role,
Skill, OrganizationalUnit, InformalDescribedAbility)
and the role of involvement (required, request, used) is enabled. The role
hereby allows specifying how the ability carrying entity is or was
involved.

Ability carrying entities are already listed in Section 5.1.2.

Class Name (subclass of AbilityCarrier) Description (taken from Section 5.1.2)

Skill Specific skills

Person A person as a whole

Role Persons role in an organisation

OrganizationalUnit Organisational unit for which a person is
working

TextualDescribedAbility Other information about more non-standard
capabilities

Table 6.2: Description of Classes that refer to ability carrying entities.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 66

This modelling allows for a balance between being too vague and forcing
to many generalizations/specializations.

The "type of involvement" further specifies the kind of involvement. It
allows expressing if something is merely requested or if it is regarded as
required. It also allows to manifest the "things" which have been used in
conducting the task and therefore allows for development in time since
what was initially considered and what is finally done may differ.

In Figure 6.3 the conceptual model for involved abilities and their
corresponding roles is shown. The class
AbilityCarrier_Involvement ties together an AbilityCarrier
with an AbilityCarrier_Role.

Figure 6.3: Involvement of Abilities, Abilities are further specified by a role.

6.3.1.4 Attachments

By means of attachments, references to other resources can be
established. Resources are information objects. Every piece of
information, which can be referenced, on the SSD is an information
object. In contrast to the usual SSD references/associations, here
additionally information can be specified. Further metadata about the role
an attachment plays can be stated. It can be expressed what the Role of
attachment is, regarding "desired/requested" or "required” or "potentially
useful / somehow related" or "used/produced/achieved". In addition, it
can be made explicit whether something is “input” or “output”. By means
of those attributes, the user can separate the attachments according to
his belief. Attachments are described in Section 5.1.3.1.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 67

Class Name (subclass of Attachment
_Role)

Description

Required All attachments which are supposed to be
necessary for the execution of the task.

Desired_Requested All attachments which are supposed to be “nice
to have” for the execution of the task, but
which are not necessary.

Used_Produced_Achieved This is to keep a record if a attachment was
really used during the execution of the task –
in contrast to something which was thought to
be useful but which was never used. The
assignment of these role is performed during
and/or afterwards the task execution.

Related Something where at the moment of the
statement could not be assigned to the other
three roles

Table 6.3: Roles, which can be assigned to, attached resources.

Figure 6.4: Task Attachments, specified by a role.

6.3.1.5 Time Management

The following three subsections are devoted to issues related to time
management. This are the planning and tracking of time and progress,
the attachment of values to order task (e.g. priority), and facilities to
inform the user when certain dates approach.

6.3.1.5.1 Planning and Tracking of Time and Progress

In order to plan and track time and progress, planning, execution and
finally completion of tasks can be differentiated. Those dichotomy of
target/actual combined with start/end; and target/actual combined with
progress (completion) and time usage are foreseen in our task model. A
concrete example of what a user would like to see is depicted in the
following example:

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 68

 target actual

start 05.02.2007 03.02.2007

end 15.02.2007 -

completion 100% 65%

time used 100 h 50 h

Table 6.4: Example for the target/actual dichotomy, a user would see something
like this information.

The attribute dueDate can accommodate a external given deadline (in
contrast, target_end reflects the users belief when he wants to have
the task finished).

The “target” column represents the information available at planning
time. The “actual” column represents the more recent information, which
is updated during task execution. That information together can be used
for progress tracking and for consistence checking (conflict recognition /
conflict de-escalation) and for a posterior statistical analysis
(benchmarking/auditing). Last but no least this information can be used
for scheduling a task.

Further, it is possible to keep a history if time spans when this task was
worked on. This is done by a series of TimeUsage Objects. Additionally
the person who has last updated the task and the time of the update are
stored.

Figure 6.5 shows the conceptualization of planning and tracking
information. As one can see, the attributes of the classes StartEnd,
Progress and TimeUsage occur pair wise as “target” and “actual”
variant.

Figure 6.5: Planning and Tracking Information, most attributes occur twice, in a
target and in a actual version.

6.3.1.5.2 Task Ordering Paradigms

Time management also deals with the problem of which tasks should be
done next (in a narrow time window) and which tasks to perform at all.
There are many tasks, which would require a work volume going beyond
what can be accomplished. The selection of the subset of most relevant
tasks according to manually judgments of priority/importance/urgency is
one way to proceed with this circumstance. The selection of tasks, which
could be delegated to other co-workers, is another possibility criterion.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 69

Since there are different paradigms for categorizing tasks, e.g. just
priority or importance and urgency, those values are encapsulated into
separate classes. We do not want to force the user to commit to a
specific paradigm.

Figure 6.6: Task Attributes for stating the personal judgement of priority and
other information, which is regarded as helpful in dealing with task amounts.

6.3.1.5.3 Notification by Reminders

Under certain circumstances, it is necessary to inform the user of
emerging or anticipated situations (see Section 5.2.3). By means of
reminders, we foresee that users are alerted to such situations. In
general, notifications should be employed when necessary and kept to a
minimum.

Examples of these situations include:

• There is insufficient time to complete tasks based on estimations
for execution times.

• Conflict of schedules due to assignment to new tasks.

• Occurrence of ad hoc high priority or critical events e.g. system
break down resulting in halt to production.

Other examples, which may be considered, include:

• The availability of new Ability Carriers for a task, which has yet to
be assigned.

• The availability additional time resources as a result of task
delegation, transfer or termination.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 70

Figure 6.7: The conceptual schema by which Notification via different types of
Reminders is realized.

6.3.1.6 Task Source

An important goal of using tasks on the SSD is the reuse of former task
knowledge. When a task is derived from existing structures (instances or
patterns) this information is kept for record. Keeping track of this
information allows for further statistics on the reuse of task knowledge.
Such statistics can help in maintaining the task repository and for
searching patterns (see Section 5.2.2 for details).

Figure 6.8: The Source of a task is kept, Task Sources are Task Instances and
Task Patterns.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 71

6.3.1.7 Task History

Since a task will evolve during its lifecycle, it is desirable to make
changes traceable. To do so, the property hasLogEntries will
aggregate a series of LogEntries (Class LogEntry). The abstract class
LogEntry will have concrete subclasses where all relevant logging
details are accommodated. Such relevant things, which are likely to be
logged, are already listed in Section 5.2.1.6. A prominent example is to
keep track of interactions by the user, e.g. like the “command history” of
Protégé.

6.3.1.8 Sub-tasks

For the task management model, we want to allow for hierarchical task
structures. We allow for the decomposition of tasks into sub-tasks. Tasks
can be arranged in a hierarchy or the other way around: tasks form a
hierarchy. In the following, we call the task which is “below” a task in the
hierarchy “sub-task”. The task, which is “above” a sub-task, we refer to
as super-task. The super-task is the parent of the sub-task. The
decomposition of tasks into sub-tasks allows to separate work items,
which are rather distinguishable. The granularity of such sub-tasks may
be very different, ranging from long-term task to very fine grained task in
the scale of minutes/seconds work to perform.

Attribute Description

Sub-tasks

[hasSubTasks:
NepomukTask]0:*

A task can have no or an arbitrary number of sub-
tasks.

Super-tasks

[hasSuperTasks:
NepomukTask]0:*

Still subject to discussion is whether we will allow
a task to have more than one super-task. On the
one hand, this introduces the complexity of multi
inheritance. However, there is no direct
“inheritance” in the task instance hierarchy. On
the other hand, there is a need for multiple super-
tasks when a task is shared between several
people, sincea shared task may be placed in
different locations.
A super-task can one side originate from the
typical case, that one has created a sub-task, on
the other side, a task may get another super-task
if the receiver of a task accepts a task and places
the task somewhere in his task hierarchy. By
placing the task in the hierarchy of the receiver, it
might be assigned to a different super-task than
on the original hierarchy of the sender.

For the time being we favour to allow more than
one super-task, though this might be revised after
implementing and using the task management
system.

Table 6.5: Attributes stating the position of a task in a hierarchy: Super-task and
Sub-tasks.

Conceptually, tasks can be expressed as shown in Figure 6.9.

Figure 6.9: The Task Schema allows for references to Super-tasks and Sub-tasks.

On the instance level, a task hierarchy looks like in Figure 6.10.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 72

Figure 6.10: Task Instances can form a hierarchy.

Sub-tasks can also originate from reusing task knowledge from a task
repository (see Section 5.2.2.3).

If no sub-tasks are used this corresponds to the usage of a flat list of To-
Do items.

Additionally TaskDependencies described in the next section may add
Metadata on the sub-tasks relation. This allows specifying additional
metadata on this super-task/sub-task relation, as depicted in Figure 6.11.
Those additional metadata may e.g. contain descriptions of why this sub-
task was created, or it may refer to choosing the appropriate alternatives
(when to choose “booking a train” compared to “booking a flight”).

Figure 6.11: Relations between arbitrary Tasks can be added. Those relations
carry metadata about the relation.

6.3.1.9 Task Dependencies

Up to now, the described task model only allows for a hierarchical
decomposition. Between the tasks, further dependencies may exist.
These dependencies allow for a graph network structure. For ease of
use, dependencies should not be too frequent, otherwise the primarily
character of a hierarchy would be diminished and a consequent graph
representation would become considerable. However, such a graph
representation has other drawbacks, the user is likely to loose oversight,
tree structures are more helpful in structuring the work.

A dependency relation is characterized by the type of the relation and by
an additional description. There are different possibilities for dependency
relations between tasks.

There are directed relations, which give an ordering as

• A is precursor to B

• A is successor to B

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 73

They are realized by using the relation type of the corresponding type
Precursor and Successor.

For the case of a super-task and a direct sub-task, the special type of
SuperTaskSubTask can be set. Since “A is super-task to B “ was
already specified without TaskDependencies, this allows to give
further explanations on the origin of this decomposition by means of the
description attribute.

There are also relation types, which give no ordering. Those undirected
relations (associations) are e.g.

• A is similar to B

• A is interdependent to B

They are realized by choosing the corresponding type
Interdependence and Similarity as the relation type.

Figure 6.12: Expression of, Arbitrary Tasks can be associated by directed and
undirected Relations.

6.3.2. Task Transmission and Access Rights

6.3.2.1 Task Transmission

On the SSD, tasks are not restricted to one person and may cross from
the PTM of one person to the PTM of another. With transmission, we
refer to the process of sending a task – from one person (sender) to one
or more other persons (receiver(s)) (see Section 5.2.1.3 Task
Transmission). Task delegation and task transfer are two special kinds of
task transmission which are described at the end of this section. In
addition, the collaborative task is realized by task transmission.

For the process of sending a task, some information is required. This
information is also modelled in the task ontology. This information is still
useful after the process of sending a task was completed.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 74

For a task transmission, some metadata is generated and stored.

Figure 6.13: To conduct a task transmission, basic information such as “from”
and “to” as well as detailed access rights are incorporated.

Task Delegation is a process where the sender of the task restricts the
access rights of the receiver. This includes the right to distribute further
this task and additionally the obligation to give feedback to the sender.
The person that receives a task by delegation usually has not the full
control about the task. The attributes described in the following section
have the purpose to enable such “access rights”. The receiver will also
probably have obligations regarding what to report to whom at which
time.

In contrast, the simplest case is that all rights are granted to the receiver
and there is no feedback desired by the sender. What to do with the task
may be apparent by the organization context, or it may be left to the
receiver. This is like sending an email – but with the advantage that the
information is transferred in the “task space” of the participating persons.

6.3.2.2 Access Rights

There are two kinds of access rights. On one side, there are the rights
which regulate what the sender gets from the receiver, and on the other
side, there are the obligations, which the sender puts upon the task on
the receiver. Both types are used as a form of access control list, where
for an arbitrary request between desktop A and desktop B can be
determined what concepts are to be exchanged/synchronized or made
visible.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 75

6.3.2.2.1 Rights of the Sender on the side of the Receiver

When a task is transferred, the sender potentially has the desire to be
able to track the progress of the task by having read access or the
sender may also want to be able to further edit the transferred task by
having write access. This access is requested (or enforced) before the
task is sent (default is that there is read access but no write access).

The accessPolicy attribute can have one of the three following states:

State Description

nothing No access granted

read Reading up-to-date information

read_write additionally to read, also editing is allowed

Table 6.6: Symbolic values which can be assigned to accessPolicy.

With this attribute, a kind of access control list is created. This access
rights are also used when additional subscribers
(Person_Involvement with a Role Subscriber) are added to a task.

6.3.2.2.2 Rights of the Receiver stated by the Sender

Those attributes represent the preference on what the receiver of a task
is allowed to do with the task. Depending on the context, e.g. on a strict
organizational setting, the preference might be enforced as a restriction.

Right Description

allowDistribution This attribute regulates whether the receiver is allowed to
send this task to other persons.

allowSubscribers Determines if the receivers is allowed to make this task
visible to other persons.

allowModifications This regulates if the receiver can make changes to the
attributes of the task. E.g. This does not prohibit all
modifications, since the SSD aims for enabling the user to
use his information.

allowStateDecision In certain settings, only the task owner may be allowed to
undertake a decision on the state of a task. With this
attribute this functionality is enabled.

allowCopying This is important if the receiver a task wants to reuse this
task - with or without a pattern repository. If copying is
allowed, reuse by (re)instantiation is enabled.

Table 6.7: Boolean Attributes which are given by the sender of a task to the
receiver of a task.

6.3.3. Task operations

Task operations represent a system-specific perspective on task functions
(see Section 5.2.) that work on the task model.

Keep in mind, the goal of this deliverable is the creation of the Nepomuk
Task Management Model. Despite the task operations are not core of this
model, the described functionality helps to understand the Nepomuk
Task Management Model.

Table 6.8 lists the operations which may be conducted within the PTM.
However, these operations are not conclusive and may change during the

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 76

analysis and design phases. We do not show those functions which do
not directly originate from the task model as e.g. addPerson(Role,
Person).

Functionality Field of
Operation

Pseudo Operation Name Description of Operation

Task Transmission show Task Transmission Dialog A dialog should be shown to the user
where he can enter the information
related to a task transmission. The user
might finally decide to send the task or
abort the transmission.

 perform Task Transmission By means of SSD communication
facilities, the task transmission is
performed.

 show Dialog For Received Task If a task is received from somewhere, a
dialog where the user can accept or
reject a task is shown. This dialog might
only be open if the user explicitly looks in
his “task inbox, so not to disturb the
users frequently.

 send Task Transmission Answer The receiver decision is communicated
back to the sender.

Search for
Tasks/Cases/Patterns

perform Unstructured Task
Search

Retrieval of Tasks/Cases/Patterns
according to textual similarity. A Facility
where several textual similarity metrics
(e.g. character n-grams) is used to find
similar tasks.

 perform Structured Task Search Retrieval of Tasks/Cases/Patterns
according to matching attributes

Task Patterns apply Pattern On Current Task

General Task
Handling

Move Sub-task To Position X

 Get Related Task (allowed
Dependency types)

 Formal Concept
Recommendation

For certain attributes it is foreseen that
the user can use a simple textual
description as well as a more formal
concept (class, instance). By means of
information extraction, the user should
get suggestions of formal concepts
according to the entered textual
description.

Search for Experts /
Executors

Find Person with Ability X Find Person according to Abilities – e.g.
Skills

 find Person for Timeframe X Find Person according to who has
unoccupied time frames

Table 6.8: High level list of functionality which is supposed to be relevant on
realizing the system.

6.3.4. Summary of Nepomuk Task

In the previous sections, we have shown how we designed the central
class of the Task Model Ontology for the SSD. Figure 6.14 gives the
complete picture of this class including all direct attributes. Figure 6.15
shows all attributes, which have classes modelled within the TMO as
type.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 77

Figure 6.14: The NepomukTask Class with all direct attributes.

Figure 6.15: The NepomukTask Class with all “non-primitive” attributes.

6.4. Task Patterns

Task patterns, as described in Section 5.2.2, aim for the reuse of prior
knowledge. In the following, we will describe the two main directions in
which task patterns are treated: They are created by an abstraction
process and task instances are created from patterns in an instantiation
process.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 78

6.4.1. Task and Pattern Repository (TPR)

The Task and Pattern Repository (TPR) is a facility where cases (used
task instances) and task patterns (abstracted task instances) are stored
for reuse. On the TPR, it is possible to perform the search for stored task
knowledge. TPR’s are the place where exchange of reusable task
knowledge between socially connected individuals occurs.

We separate between personal and organizational TPR’s. Whereas a
personal TPR exists on the Social Semantic Desktop, an organizational
TPR exists within a organization and is used by several Social Semantic
Desktops. The personal TPR is the archive of a PTM. In an organizational
TPR patterns and cases from several personal TPR’s are merged
together. For organizational TPR there will likely be maintenance and
consolidation of task knowledge by voluntary or obliged humans. An
organizational TPR allows creating patterns based on several similar
cases.

6.4.2. Task Pattern Model and Lifecycle

6.4.2.1 Task Case Abstraction

Task case abstraction, resulting in the creation or update of task
patterns, emanates from existing task cases. This typically takes place in
the personal Task and Pattern Repository. This is in general a difficult
and effort-intensive process, starting with the identification of selected
task attributes for generalisation. These are typically context-dependent
attributes such as task name but may extend to other attributes
identified by the system as deviations from the underlying task pattern (if
relevant). The user then proceeds to remove case-specific details and
generalise these in a fashion that is more amenable to reuse in similar
task situations. Finally, the abstracted task case is created or updated in
the pattern repository.

Personal PTR

T1

T3T2 T4

Task Pattern

PTM – Task Inbox

T1

T3T2 T4

Task Case

4

3

2

1

4 3

21

ST1 ST2 ST3

ST1 ST2 ST3

Pre-filled placeholder field

Empty placeholder field

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

Select
task case

Identify
selected

task attributes

Abstract
selected

task attributes

Create or
update

task pattern

Figure 6.15: Task pattern lifecycle – task case abstraction.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 79

6.4.2.2 Task Instantiation

Task instantiation from task patterns is more or less a reverse of the task
case abstraction process. The user searches or browses the pattern
repository for suitable task patterns matching the characteristics of the
task at hand. In the event that specialised task patterns are available,
e.g. travel planning task pattern vs. travel-to-Karlsruhe planning task
pattern, the more general task pattern is recommended. However, all
matching task patterns are displayed and ranked by relevance. The user
may use the recommended task pattern as a search template to refine
his search until he selects the task pattern from which he wishes to
instantiate. Note that the new task instance may be embedded as a sub-
task within a super-task or may be a top-level task within his PTM.

Personal PTR

T1

T3T2 T4

Task Pattern
Select
pattern

Transform
pattern into

tasks

Processed by
task mgmt.

infrastructure

Create tasks in
the personal
task inbox

Select
pattern

Transform
pattern into

tasks

Processed by
task mgmt.

infrastructure

Create tasks in
the personal
task inbox

PTM – Task Inbox

T1

T3T2 T4

Task Instance

1

2

3

4

1
2

3
4

ST1 ST2 ST3

ST1 ST2 ST3

Pre-filled placeholder field

Empty placeholder field

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

T1

T2 T4

ST1 ST3

Figure 6.16: Task pattern lifecycle – task instantiation.

6.4.2.3 Statistical attributes

Task patterns have additional requirements beyond those of tasks.
Where the aim of tasks is to support the management and execution of
work activities, the aim of task patterns is to support the management
and transfer of work experience across tasks and social contexts. To this
end, additional attributes are necessary to record, say, statistical usage
information of tasks derived from a given task pattern, and selected
aspects of the task history such as sub-task reorganisation and execution
times.

The following table describes some additional attributes specific to task
patterns. However, this should be open to extension and modification as
new insights are gained.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 80

Attribute Description

Usage Count

[usageCount:Integer]0:1

The number of times the task
pattern has been applied.

Total usage duration

[totalUsageDuration:Integer]0:1

The total duration across all tasks
instantiated from the task pattern.

Sub-task deletion

[deletedSubtasks:NepomukTask]0:*

A list of sub-tasks deleted from task
instances derived from the task
pattern during task execution.

Sub-task reorganisation

[reorganizedSubtasks:NepomukTask]0:*

A list of sub-tasks reorganized within
task instances during task execution
e.g. change of sequence, moved into
sub-task.

Update Count

[update:Integer]0:1

The number of times the task
pattern has been revised.

Table 6.9 – Task pattern specific attributes.

Figure 6.17: Task pattern.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 81

7. Conclusion

Theories such as Activity Theory and Coordination Theory provide a
powerful basis for the development of the Nepomuk Task Management.
These theories do not provide direct information on the features that we
have to consider for implementation, but they point at the aspects of the
task management that are important. For example, Activity Theory
described the constituents of the task such as actor, goal, and means,
while Coordination Theory points at the necessity to describe tasks in
their substructures, which might again consist of finer tasks related to
parts of the work to be done.

The requirements that have been formulated in the case studies are not
sufficient to define the task management model. They can only point at
necessary conditions that we must fulfil with the task management.
Therefore, the requirements played only a minor role in the document.
We only used it to control that our task model provides the individually
formulated requirements.

The conceptual task model provides an integration of the collected ideas
in a consistent way, however, on a yet informal level. Here all relevant
aspects from the different theories and exiting models are combined to
one concept that is the basis for the formal ontological description that is
provided at the end.

The ontological representation of the task management is a central
gateway to the semantic work of Nepomuk and allows us to seamless
integrate it into the provided semantic framework. Thus the task
management becomes accessible to Nepomuk services and can seamless
contribute information to other Nepomuk components.

The representation of the task model in this report is only the first step
towards a complete description. It mainly focuses on the structural
components of the task model, describing corresponding classes and
attributes, and masks out the dynamic aspects. Nevertheless, Section 5
considers the task functionality but only against the requirement to
determine the structure in such a way that this functionality can be
realized on this basis. This means that the functional description does not
fully grasp all dynamic aspects.

Another issue that was not considered thoroughly as well are the topics
of security and privacy. Naturally, these aspects play a central role in the
task management but on the other hand, security and privacy issues
cannot be solved at the level of task management alone. Therefore, we
have postponed these issues to a general Nepomuk discussion, which is
starting to evolve.

Summing up we consider the task model in the present form as a solid
basis for the further development. This concerns the integration of the
ontological structure in the global Nepomuk structure, e.g., with respect
to PIMO. One of the goals of this report also was the identification of
open questions and some of these could be identified. They will become
the focus of the following discussions and the ongoing work.

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 82

8. References

8.1. State of the art analysis - task modelling

Blackler, F. (1995). Knowledge, Knowledge Work and Organizations: An
Overview and Interpretation. Organization Studies, 16(6), 1021-
1046.

Brunzel et al. (2006a) Marko Brunzel, Myra Spiliopoulou. Discovering
Semantic Sibling Groups from Web Documents with XTREEM-
SG. In Proc. of EKAW 2006, LNAI 4248, Podebrady, Czech
Republic, October 2006.

Brunzel et al. (2006b) Marko Brunzel, Myra Spiliopoulou. Discovering
Semantic Sibling Associations from Web Documents with
XTREEM-SP. In Proc. of DAWAK 2006, LNCS 4081, Krakow,
Poland, September 2006.

Brunzel et al. (2007) Marko Brunzel, Andreas Dengel, Myra Spiliopoulou.
Indexing the WWW for Sibling Terms. submitted to WWW
2007.

Crowston et al. (2004) Kevin Crowston, Joseph Rubleske and James
Howison. Coordination Theory: A Ten-Year Retrospective. Draft
of 23 September 2004. To appear In Zhang, P. and Galletta, D.
(Eds.) Human-Computer Interaction in Management
Information Systems, M. E. Sharpe, Inc.
http://crowston.syr.edu/papers/coord2004.pdf (Last accessed:
01/08/2007).

DFKI (2003). DFKI GmbH. Weak Workflows in FRODO TaskMan – System
Walkthrough and Evaluation. 2003.
http://www.dfki.de/frodo/taskman/taskman_eval_june03.pdf
(Last accessed: 01/08/2007).

Dourish (1996) Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P.,
and Zbyslaw, A.: Freeflow: mediating between representation
and action in workflow systems. In Proceedings of the 1996
ACM Conference on Computer Supported Cooperative Work
(Boston, Massachusetts, United States, November 16 - 20,
1996). M. S. Ackerman, Ed. CSCW '96. ACM Press, New York,
NY, 190-198.

Dustdar (2004) Dustdar, S.: Caramba—A Process-Aware Collaboration
System Supporting Ad hoc and Collaborative Processes in
Virtual Teams. Distrib. Parallel Databases 15, 1 (Jan. 2004), 45-
66.

FRODO (2003). Andreas Abecker, Ansgar Bernardi, Ludger van Elst and
Andreas Lauer, Heiko Maus, Michael Sintek and Sven Schwarz.
FRODO: ("A Framework for Distributed Organizational
Memories"). Abschlußbericht}, BMBF Abschlussbericht, FKZ 01
IW 901. 2003.

FRODO (2005) FRODO ("A Framework for Distributed Organizational
Memories") Website, German Research Center for Artificial
Intelligence, http://www.dfki.uni-
kl.de/KM//content/e179/e506/index_eng.html (Last accessed:
01/08/2007).

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 83

Gollwitzer (1990) Gollwitzer, P. M.: Action Phases and Mind-sets. In: E. T.
Higgins; R. M. Sorrentino: Handbook of Motivation and
Cognition, Vol. 2, Guilford, New York, 1990.

Grebner (2006) Grebner, Olaf. Service-oriented task management.
Diploma thesis, Department of Business Information Systems,
Darmstadt University of Technology, Germany 2006.

Guareis de Farias et al. (2000) Guareis de Farias, C.R., Ferreira Pires, L.
and van Sinderen, M. 2000: A conceptual model for the
development of CSCW systems. Fourth International
Conference on the Design of Cooperative Systems. To appear.

Jonassen, D.H.; Murphy, M. (1998). Activity theory as a framework for
designing constructivist learning environments. St. Louis,
Missouri: Paper presented at the annual meeting of the
Association for Educational Communications and Technology.

Kreifelts et al. (1993) Thomas Kreifelts, Elke Hinrichs, Gerd Woetzel
(Gesellschaft für Mathematik und Datenverarbeitung, Germany)
Sharing To-Do Lists with a Distributed Task Manager. ECSCW
’93, Proc. Third European Conference on Computer-Supported
Cooperative Work, September 15-17, 1993, Milano, Italy.

Kuutti (1991) Kuutti, K.: The concept of activity as a basic unit of analysis
for CSCW research, Proc. of the European Conf. on Computer
Supported Cooperative Work ECSCW’91.

Leontiev (1978). Leontiev, A. N: Activity, Consciousness, and Personality.
Eaglewood Cliffs, NJ, Prentice-Hall, 1978. (Original work
published in Russian in 1975).

Leontiev (1981). Leontiev, A. N.: Problems of the development of the
mind. Moscow, Progress, 1981.

Malone Crowston (1990) Malone, T. W. and Crowston, K. 1990. What is
Coordination Theory and How Can It Help Design Cooperative
Work Systems? Proceedings of the 1990 ACM conference on
Computer-supported cooperative work, Los Angeles, California,
United States, pp. 357 – 370.

Malone Crowston (1994) Malone, T. W. and Crowston, K. 1994. The
interdisciplinary study of coordination. ACM Comput. Surv. 26, 1
(Mar. 1994), 87-119. DOI=
http://doi.acm.org/10.1145/174666.174668 (Last accessed:
01/08/2007).

Medina-Mora et al. (1992). Medina-Mora, R. et al,: 1992, The action
workflow approach to workflow management technology, Proc.
of the Conf. on Computer Supported Cooperative Work
CSCW92.

Moran (2005). Thomas P. Moran. “Unified Activity Management: Explicitly
Representing Activity in Work-Support Systems.”, Proceedings
of the European Conference on Computer-Supported
Cooperative Work (ECSCW 2005), Workshop on Activity: From
Theoretical to a Computational Construct (2005).

Moran (2005a) Thomas P. Moran. Unified Activity Management for BPDM.
2005/7/22. www.bpmn.org/Documents/BPDM/2005-07-
22%20uam%20BPDM.ppt (Last accessed: 01/01/2006).

Moran et al. (2005) Moran, T.P., Cozzi, A., Farrell, S.P. (2005). Unified
Activity Management: Supporting people in e-business.
Communications of the ACM, 48(12).

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 84

Moran et al. (2006). Moody, P.; Gruen, D.; Muller, M.J.; Tang, J.; Moran,
T.P. (2006). Business activity patterns: A new model for
collaborative business applications. IBM Systems Journal, Vol.
43, No. 4, 683-694.

Polanyi (1966). Polanyi, M.E. (1966). Personal Knowledge: Towards a
Post-Critical Philosophy, University of Chicago Press, Chicago,
IL.

Prinz (1994) Prinz, Wolfgang, "Object-oriented organization modeling for
the support of CSCW," System Sciences, 1994. Vol.IV:
Information Systems: Collaboration Technology Organizational
Systems and Technology, Proceedings of the Twenty-Seventh
Hawaii International Conference on , vol.4, no.pp.797-806, 4-7
Jan 1994. URL:
http://ieeexplore.ieee.org/iel2/934/7712/00323429.pdf?isnumb
er=7712∏=STD&arnumber=323429&arnumber=323429&arSt=
797&ared=806&arAuthor=Prinz%2C+W (Last accessed:
01/08/2007).

Riss et al. (2005) Riss, U.V.; Rickayzen, A.; Maus, H.; Aalst, W. M. P. v.
d.: Challenges for Business Process and Task Management.
J.UKM 0 (2), (2005) 77-100.

Riss et al. (2006) Riss, U. V.; Cress, U.; Kimmerle, J.; Martin, S. (2006)
Knowledge Transfer by Sharing Task Patterns - From
Experiment to Application. Proceeding of KMAC 2006,
Birmingham.

Riss et al. (2007) Riss, U.V.; Jarodzka, H.M.; Grebner, O.: Pattern-based
task management and implicit knowledge. NAIK Workshop at
the 4th Conference on Professional Knowledge Management,
Potsdam, Germany.

Teege (1996) Gunnar Teege, Object-Oriented Activity Support: A Model
for Integrated CSCW Systems, Computer Supported
Cooperative Work: The Journal of Collaborative Computing 5,
pp.93-124, 1996.

Winograd (1988) Winograd, T.: 1988, A Language/Action Perspective on
the Design of Cooperative Work, Human Computer Interaction
3(1), 3 30.

8.2. Task Management Model Requirements – Scoping

Nepomuk D8.1 (2006) Nepomuk Consortium. Deliverable D8.1: Institute
Pasteur Scenario Report.
http://nepomuk.semanticdesktop.org/xwiki/bin/download/IST/
WebHome/D8.1_v31_NEPOMUK_IP_Scenario_Report.pdf (Last
accessed: 01/08/2007).

Nepomuk D9.1 (2006) Nepomuk Consortium. Deliverable D9.1: TMI
Scenario Report.
http://nepomuk.semanticdesktop.org/xwiki/bin/download/IST/
WebHome/D9.1_v32_NEPOMUK_TMI_Scenario_Report.pdf
(Last accessed: 01/08/2007).

Nepomuk D10.1 (2006) Nepomuk Consortium. Deliverable D10.1: SAP
Scenario Report.
http://nepomuk.semanticdesktop.org/xwiki/bin/download/IST/
WebHome/D10.1_v11_NEPOMUK_SAP_Scenario_Report.pdf
(Last accessed: 01/08/2007).

 NEPOMUK 29.01.2007

Deliverable D3.1 Version 1.0 85

Nepomuk D11.1 (2006) Nepomuk Consortium. Deliverable D11.1:
Mandrake Community Scenario Report.
http://nepomuk.semanticdesktop.org/xwiki/bin/download/IST/
WebHome/D11.1_v11_NEPOMUK_Mandriva_Community_Scena
rio_Report.pdf (Last accessed: 01/08/2007).

8.3. Conceptual Task Management Model

WfMC (1999) Workflow Management Coalition. Terminology & Glossary.
Document Number WFMC-TC-1011, Document Status - Issue
3.0. Feb 99. http://www.wfmc.org/standards/docs/TC-
1011_term_glossary_v3.pdf (Last accessed: 01/08/2007).

8.4. Task Management Model

NRL (2006) NEPOMUK Representational Language (NRL) Vocabulary
Specification [Draft]
http://svn.nepomuk.semanticdesktop.org/repos/trunk/taskforce
/TF-Ont/draft/NRL.html (Last accessed: 01/08/2007).

PIMO Ontology (2006)
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main/Pimo
OntologyDFKI (Last accessed: 01/08/2007).

PIMOS (2006) NEPOMUK pimos - the Personal Information Model
Structures
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main/pimo
s (Last accessed: 01/08/2007).

Sauermann (2006) Leo Sauermann. PIMO - a PIM Ontology for the
Semantic Desktop. http://www.dfki.uni-
kl.de/~sauermann/2006/01-pimo-
report/pimOntologyLanguageReport.html (Last accessed:
01/08/2007).

Sintek (2001) Michael Sintek. OntoViz Protégé Plug-In.
http://protege.cim3.net/cgi-bin/wiki.pl?OntoViz (Last accessed:
01/08/2007).

Sintek et al. (2006) Michael Sintek, Ludger van Elst, Simon Scerri,
Siegfried Handschuh. Distributed Knowledge Representation on
the Social Semantic Desktop: Named Graphs, Views and Roles
in NRL. Submitted to European Semantic Web Conference
2007.

Spyns et al.(2002) Spyns P., Meersman R. & Jarrar M., Data modelling
versus Ontology engineering. SIGMOD Record: Special Issue on
Semantic Web and Data Management, 31(4) : 12 - 17,
December 2002.

TF-Ont (2006) NEPOMUK Ontologies Task Force
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main/TF-
Ont (Last accessed: 01/08/2007).

TF-PIMO (2006) NEPOMUK Personal Information Management Ontology
Task Force
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main/TF-
PIMO (Last accessed: 01/08/2007).

