
Integrated Project

Priority 2.4.7

Semantic based knowledge systems

Community Support Software
First Version

Deliverable D5.1

Version 1.1

29.06.2007

Dissemination level: PU

Nature Prototype

Due date 30.06.2007

Lead contractor LEIBNIZ UNIVERSITAET HANNOVER

Start date of project 01.01.2006

Duration 36 months

NEPOMUK 29.06.2007

Authors

Gianluca Demartini
Parisa Haghani
Robert Jäschke
Ann Johnston
Malte Kiesel
Raluca Paiu

Mentors

Stéphane Laurière, EDGE-IT S.A.R.L
Bosse Westerlund, KUNGLIGA TEKNISKA HOEGSKOLAN

Contributors

Vasilios Darlagiannis
Pär Lannerö

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Trippstadter Str. 122
67663 Kaiserslautern
Germany
E-Mail: bernardi@dfki.uni-kl.de, phone: +49 631 205 75 105

Partners

DEUTSCHES FORSCHUNGSZENTRUM F. KUENSTLICHE INTELLIGENZ GMBH
IBM IRELAND PRODUCT DISTRIBUTION LIMITED
SAP AG
HEWLETT PACKARD GALWAY LTD
THALES S.A.
PRC GROUP - THE MANAGEMENT HOUSE S.A.
EDGE-IT S.A.R.L
COGNIUM SYSTEMS S.A.
NATIONAL UNIVERSITY OF IRELAND, GALWAY
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE
LEIBNIZ UNIVERSITAET HANNOVER
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS
KUNGLIGA TEKNISKA HOEGSKOLAN
UNIVERSITA DELLA SVIZZERA ITALIANA
IRION MANAGEMENT CONSULTING GMBH

Copyright: NEPOMUK Consortium 2007
Copyright on template: Irion Management Consulting GmbH 2007

Deliverable D5.1 Version 1.1 ii

NEPOMUK 29.06.2007

Versions

Version Date Reason

1.0 06.06.2007 Final version for the mentors as subject to be reviewed

1.1 29.06.2007 Integration of mentor’s comments and released as final

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for NEPOMUK partners

Deliverable D5.1 Version 1.1 iii

NEPOMUK 29.06.2007

Executive summary

WP5000 investigates and exploits the knowledge exchange in social networks
and provides tools and services for community identification and analysis and
for supporting knowledge exchange in these semantic social networks. The
goal of the first deliverable is to provide a first version of the community sup-
port software which is composed by a documented and tested prototype of
a community detection algorithm and (semi-) automatic metadata alignment.
The deliverable provides community detection and metadata alignment func-
tionalities, packaged as two components, Community Manager and Metadata
Aligner, and integrated into the NEPOMUK component architecture. Although
they are not applications on their own, they form an infrastructure which can
be adopted and used by other applications.
Our work resulted in the following:

• The Community Manager1 component, which identifies social structures
in the network of NEPOMUK peers, analyzes these structures and pro-
vides methods for other components or applications to access the re-
sults.

• The Metadata Alignment2 component, being responsible for generating
mappings between ontologies used by different peers in the NEPOMUK
network.

To accomplish the community detection and labeling task provided by the
Community Manager,

• we describe how the folksonomy structure of the NEPOMUK network can
be analyzed to detect communities of users within the network, introduc-
ing social resource sharing systems and formalizing the underlying data
structure called folksonomy;

• we present the FolkRank algorithm and its application to community
detection;

• we describ the Trias algorithm for mining frequent closed tri-sets of a
folksonomy.

The implementation of the Community Manager component, done with this
deliverable, allows the extraction of communities of users within the NEPOMUK
P2P3 network. Communities can be defined as groups of users belonging
together or groups of users with affinity to a certain topic.
The main task of the Metadata Aligner component is to identify relationships
between personal ontologies as created and used by end users. Knowledge of
relationships is necessary to implement features such as recommendation of
similar documents within the workspace of other users as well as enhancing
semantic search. Within the scope of NEPOMUK, we will not formally infer
class relationships, but gather evidence for such relationships. This is due to
the fact that the PIMO ontologies we want to align are ontologies created by
end-users, therefore mostly having a kind of ad-hoc character instead of being
completely formally sound.
For the realization of the Metadata Aligner component,
1 Located on the NEPOMUK SVN Server https://dev.nepomuk.semanticdesktop.org in
the directory /repos/trunk/java/org.semanticdesktop.nepomuk.comp.communitymanager 2 Lo-
cated on the NEPOMUK SVN Server https://dev.nepomuk.semanticdesktop.org in the di-
rectory /repos/trunk/java/org.semanticdesktop.nepomuk.comp.phasealignment 3 Abbreviations
are listed in the Appendix A.

Deliverable D5.1 Version 1.1 iv

https://dev.nepomuk.semanticdesktop.org
https://dev.nepomuk.semanticdesktop.org

NEPOMUK 29.06.2007

• we present a framework that collects and integrates heuristic evidence
for ontology mappings. The framework can employ three basic sources
of evidence for ontology mappings, namely term-based, topology-based
and instance-based evidence.

We have implemented the basic functionalities for the semantic social network-
ing and knowledge exchange contributions of WP5000 to the Social Seman-
tic Desktop NEPOMUK. We developed, implemented, and analyzed methods
for community detection and labeling, as well for (semi-)automatic metadata
alignment4.

4 Note that some of the these functionalities, especially those focused on metadata recommen-
dations, will be described in detail only in deliverable D5.2

Deliverable D5.1 Version 1.1 v

NEPOMUK 29.06.2007

Table of contents

1 Introduction . 1
2 Requirements and Objectives . 3

2.1 Community Manager. 3
2.2 (Semi-)Automatic Metadata Alignment . 3

3 State of the Art . 5
3.1 Community Detection. 5
3.2 Social Network Analysis in Folksonomies 6
3.3 (Semi-) Automatic Metadata Alignment 7

4 Community Support Architecture. 10
4.1 Community Manager. 12

4.1.1 Service Description . 12
4.1.2 Architecture . 12
4.1.3 Gathering Data . 14
4.1.4 Relation to other components 15
4.1.5 Invocation Example . 15

4.2 Metadata Alignment . 16
4.2.1 Service Description . 16
4.2.2 Architecture of Metadata Alignment 18
4.2.3 Relation to other components 19

5 Community Detection . 20
5.1 Social Resource Sharing and Folksonomies 20
5.2 Adapting PageRank for Folksonomies . 21
5.3 FolkRank—Community Detection in Folksonomies 26
5.4 Conceptual Clustering of Folksonomies. 29
5.5 The Trias Algorithm for Mining all Frequent Tri-Concepts . 32

6 Metadata Alignment . 38
6.1 Ontology Adapters . 39
6.2 Similarity Measures . 40

6.2.1 String Based Similarity . 40
6.2.2 Acronym Matcher . 40
6.2.3 Similarity Flooding . 41
6.2.4 Graph Matching . 45

6.3 Alignment Generators . 46
6.4 Evaluation. 47

7 Conclusions . 49
A Abbreviations . 55

Deliverable D5.1 Version 1.1 vi

NEPOMUK 29.06.2007

1 Introduction

In the context of NEPOMUK - The Social Semantic Desktop- the social
aspect is brought in by WP5000: the social networking components helping
to build and maintain topic- and content-specific interconnections between
distributed individual workspaces.
The aim of this deliverable is to provide a first version of a documented and
tested prototype of community detection algorithm and (semi-) automatic
metadata alignment. Even though social network analysis algorithms do al-
ready exist, they are only based on static information (e.g. FOAF, in which
people manually specify their friends). Our goal was therefore to identify solu-
tions to automatically infer these communities, as well as to find and join them
easily. Moreover, since we will face very large networks of independent users,
it will be difficult to enforce global metadata schemes. Therefore, another goal
was to investigate possible metadata alignment techniques, as well as means
to (semi-)automate this process.
To detect communities by analyzing the conceptual commonalities of users rea-
sonable amounts of data are needed. Social information sharing tools, such
as Flickr5 or del.icio.us,6 have acquired large numbers of users, who have cre-
ated huge amounts of information within less than two years. One reason for
their immediate success is the fact that no specific skills are needed for partic-
ipating, and that these tools yield immediate benefit for each individual user
(e. g. organizing ones bookmarks in a browser-independent, persistent fash-
ion) without too much overhead. The frequent use of these systems shows
clearly that web- and folksonomy-based approaches are able to overcome
the knowledge acquisition bottleneck, which was a serious handicap for many
knowledge-based systems in the past.
Social resource sharing systems all use the same kind of lightweight knowl-
edge representation, called folksonomy, that is conceptual structures created
by the people. In NEPOMUK a folksonomy is inherently present in the network
of peers which contains the aggregated information of its users. Applica-
tions like the Wiki allow users to annotate their resources (e. g. wiki pages)
with tags; keywords may be extracted from pictures users saved on Flickr or
BibTEX files they managed with BibSonomy

7. Hence, in plenty of the NEPO-
MUK scenarios a rich amount of tagged resources will be available on the local
desktop of each user.
To this end we propose a formal model for folksonomies, and present a new
algorithm, called FolkRank, that takes into account the folksonomy structure
to detect communities of users in folksonomy based systems. This algorithm
is implemented in the Community Manager component of deliverable D5.1
and will be described in detail in Section 5.3. It has been published at the
European Semantic Web Conference 2006 [30].
Another approach for community detection presented in this deliverable is
based on Formal Concept Analysis (FCA), a mathematical theory for deriving
concept hierarchies from data. We give a formal definition of the problem of
mining all frequent tri-concepts (the three-dimensional version of mining all
frequent closed itemsets), and present in Section 5.5 our algorithm Trias for
mining all frequent tri-concepts of a given dataset [31].
The subsequent aspect to be taken into account is the one of sharing the
information created through the resource annotation process. The problem
of sharing semantically rich data, is well known in today’s information-driven
world and much effort has been put on it. This task is inherently difficult,
since data represented by different ontologies or schemas need to be mapped
or translated into known formats so that queries in those formats can be
5 http://www.flickr.com/ 6 http://del.icio.us 7 http://www.bibsonomy.org

Deliverable D5.1 Version 1.1 1

http://www.bibsonomy.org

NEPOMUK 29.06.2007

run over them. The motivating reasons of this task are twofold: First, the
benefits of semantic sharing are invaluable, and Second, to gain semantic
interoperability, we need to overcome the semantic heterogeneity obstacle by
producing mappings between schemas. The approach of generating a global
ontology or schema, even for a specific domain, to overcome the semantic
heterogeneity is now obsolete. In this approach the idea is to maintain a
global schema and mappings from other schemas to this one. This is not
feasible due to the decentralized nature of the semantic web, as all users
would need to consistently follow the global schema.
The problem of producing metadata alignments can be defined as finding the
correspondences between elements of two different ontologies or schemas.
Much work has been done in this regard, based on several different tech-
niques. Our approach, however, is based on gathering evidences from differ-
ent sources to infer mappings. This approach can be either totally automatic
or it can take into account user’s feedback (as new evidence) and be consid-
ered as semi-automatic.
The deliverable is structured as follows. In Section 2 we describe the require-
ments and objectives of the community manager component, of the semi
automatic metadata alignment component, and of the integration of these
two. Then, in Section 3 we illustrate the state of the art in the field of commu-
nity detection, social network analysis in folksonomies, and (semi-) automatic
metadata alignment. After this, in Section 4, we describe the architecture
of the community support component. In Section 5 we describe how the
folksonomy structure of the NEPOMUK network is analyzed to detect commu-
nities of users. In Section 6 we show our approach to identify relationships
between elements of given ontologies by aggregating different available evi-
dences. Section 7 concludes the document summarizing and discussing the
obtained results.

Deliverable D5.1 Version 1.1 2

NEPOMUK 29.06.2007

2 Requirements and Objectives

In the following we describe the requirements and objectives of the commu-
nity support software to motivate the components presented in this deliver-
able.
WP5000 investigates and exploits the knowledge exchange in social networks
and, building upon the basic infrastructure in WP2000 and WP4000, provides
tools and services for community identification and analysis and for supporting
knowledge exchange in these semantic social networks.
The goal of the first deliverable within WP5000 is to provide a first version of
the community support software which is composed by a documented and
tested prototype of community detection algorithm and (semi-) automatic
metadata alignment.

2.1 Community Manager

For this component, the focal point is on Semantic Social Network Analysis
to detect communities of users which share similiar interests. To gain insight
how the detection of communities can improve the workflow of the individual
NEPOMUK user, imagine the first Mandriva scenario8 which describes how Kim
searches for help in the Mandriva Club to connect a harddisk with a relatively
new technology. The web page presenting the search results could also con-
tain a community of users related to the search terms he entered. When Kim
clicks on the community, he finds options to contact the community members
and ask them for help. The users were found by the Community Manager
as belonging to that community because they tagged the same or similiar re-
sources with the same or similiar tags. Hence, they seem to be interested in
the kind of problem Kim has and might even have solved similiar problems.
Kim finds André in the community list and knows his name from other so-
lutions he has contributed and which were very helpful for him. Thus, Kim
decides to contact André and ask him for advice. If André does not know a
solution, Kim could send a message to the top community members and ask
them for advice.
Consequently, for the Community Manager component we see the following
requirements:

• analyze and construct a community infrastructure model upon which
further applications will be deployed;

• apply and mutually augment methods of social network analysis and the
semantic web technologies over the Social Semantic Desktop;

• provide a prototypical implementation to detect communities of collab-
orators who share common interests, and make their structure explicit,
thus enabling various additional enhancements, such as easier finding
and joining of relevant communities.

2.2 (Semi-)Automatic Metadata Alignment

For this component, the focal point is on Metadata extraction and automatic
metadata alignment.
8 http://nepomuk.semanticdesktop.org/xwiki/bin/view/KTH/MandrivaScenario1

Deliverable D5.1 Version 1.1 3

http://nepomuk.semanticdesktop.org/xwiki/bin/view/KTH/MandrivaScenario1

NEPOMUK 29.06.2007

In a very large network of independent users, it will be hard to enforce global
metadata schemas. The goal is to investigate possible metadata alignment
methods, as well as means to automate these proposed solutions.
As a good example of how metadata alignment can be used in the context
of the social semantic desktop, we can refer to a similar scenario to the one
presented in D1.1 as "Ontology enhanced search in semantic helpdesk”. Kim
is looking for an answer to his current problem (how to install his new graphic
card) and issues a query, which tries to find the right driver for his type of
graphic card, produced by a certain manufacturer. Formalized, the query looks
as follows:
(SELECT ?d WHERE ?x hasManufacturer A AND ?x rdf:type GraphicCard AND
?x hasDriver ?d).
Alistair holds this information, but unfortunately Kim’s ontology for computer
gadgets is different from Alistair’s. If a mapping between the two ontologies
would exist in the system, Alistair’s data could also be searched and the search
function could provide Kim with the answer he needs.
For the (semi-) Automatic Metadata Alignment component we see the follow-
ing requirements:

• Scalability: define metadata alignment algorithms which allow large net-
works of independent users, each utilizing a different ontology.

• Quality: the need for these users to interact seamlessly with each other
and share structured data.

Since much research has already been done in the area of ontology alignment,
we define the following as our objectives for the (semi-)Automatic Metadata
Alignment component:

• investigating the existing alignment methods which utilize different types
of information to produce mappings between ontologies.

• implementation of some of these approaches, and devising methods for
aggregating the results of them to utilize all available information.

Metadata Alignment is one of the mentioned requirements in WP9000 - Pro-
fessional Business Services Case Study.

Deliverable D5.1 Version 1.1 4

NEPOMUK 29.06.2007

3 State of the Art

This section presents the state of the art in research regarding topics which
are affected by the algorithms developed in WP5000 and delivered in D5.1.
First, we present a selection of techniques which have been used in the past
for community detection in complex networks, then we proceed with analysis
which has been done in the fields of folksonomies and (Triadic) Formal Con-
cept Analysis. We conclude with an overview on publications about metadata
alignment.

3.1 Community Detection

People have used the social network metaphor for almost a century to con-
note complex sets of relationships between members of social systems at all
scales, from interpersonal to international. Starting with the mid 50’s, social
scientists start using the term systematically to denote patterns of ties that
cut across the concepts traditionally used by the public and social scientists:
bounded groups (e.g., tribes, families) and social categories (e.g., gender, eth-
nicity). Also around that time social network analysis has emerged as a key
technique in sociology, anthropology, sociolinguistics, geography, social psy-
chology, information science and organizational studies, as well as a popular
topic of speculation and study.
Nowadays, social network analysis has moved from being a suggestive metaphor
to an analytic approach to a paradigm, with its own theoretical statements,
methods and research tribes. Analysts reason from whole to part; from struc-
ture to relation to individual; from behavior to attitude. They either study
whole networks, all of the ties containing specified relations in a defined popu-
lation, or personal networks, the ties that specified people have, such as their
“personal communities”.
Over the past decade, complex networks have attracted an increasing inter-
est, many research areas tackling aspects like information flow within the
network, extracting information about the birth of the network or its growth
mechanisms. Some examples of complex networks include:

• co-authorship networks—where nodes are scientists and an edge is
drawn between two nodes if they co-authored one paper

• the Internet—where nodes are routers and edges represent the con-
nectivity between the routers

• protein networks—where nodes are proteins and edges represent the
protein interactions between the nodes

• friendship networks—where nodes are people and edges represent
the friendship relationships

• folksonomies—with users, tags and resources as nodes and a hyper-
edge connecting each one of them if a user has tagged a resource with
a tag

Due to its applicability to a wide scale of disciplines, community detection has
also become an important topic. One of the most relevant community detec-
tion algorithms was presented in [49], and is based on removal of the edges
according to edge betweenness. The edges are repeatedly removed from the
network, starting from the node with highest betweenness centrality. After
each removal the edge betweenness is recomputed and the algorithms stops

Deliverable D5.1 Version 1.1 5

NEPOMUK 29.06.2007

where no more edges can be found between vertices. For small networks this
divisive algorithm performs very good and finds very accurate results.
Similar to the algorithm in [49] is the approach described in [56]. However,
the measure they use is different: instead of edge betweenness this approach
is based on counting the short loops in the network, loops of length three, or
triangles, in the simplest case. As in the previous algorithm, this measure is
recalculated after each removal, but since it is a local measure that can be
calculated quickly, the overall algorithm is much faster.
A totally different approach is presented in [16]—the first proposed algorithm
for community detection in very large networks. The algorithm is a hierarchi-
cal agglomerative approach based on network modularity (a measure which
determines the quality of splitting a network into communities). It starts with
n communities of n vertices and at each step it merges communities into big-
ger communities, such that those communities that are picked to be merged
yield the highest increase in network modularity. Each potential merge of two
communities has a contribution of ∆Q to network modularity Q, and the idea
is to merge two communities that yield the highest increase in Q, that is the
selection of the tuple with highest ∆Q value at each step.
Another divisive algorithm is presented in [22], which is based on network
modularity Q. The network is divided into two random communities, and each
node in the communities has a contribution value λ to the network modularity
Q. At each step the node with the lowest λ is transferred to the other commu-
nity. The transfer of nodes between communities continues until there is no
increase in the Q value of the network. Then the network is divided into the
two communities and the algorithm continues the same process recursively in
the smaller communities.
The community detection algorithms mainly try to find communities by dividing
the network into “reasonable” partitions or reversely merge nodes iteratively
into the same community. Other approaches try to optimize a global property
of the network, which is in most cases the network modularity, Q. Never-
theless, none of the described algorithms has been applied to the ternary
hypergraph structure of a folksonomy.

3.2 Social Network Analysis in Folksonomies

There are currently only few scientific publications about folksonomy-based
web collaboration systems available. The main discussion on folksonomies
and related topics is currently taking place on mailing lists, e.g. [17, 67], or
blogs.
Two of the first publications in this new field of research are [28] and [41]
which provide good overviews of social bookmarking tools with special em-
phasis on folksonomies, and [43] which discusses strengths and limitations
of folksonomies. In [47], Mika defines a model of semantic-social networks
for extracting lightweight ontologies from del.icio.us. Besides calculating mea-
sures like the clustering coefficient, (local) betweenness centrality or the net-
work constraint on the extracted one-mode network, Mika uses co-occurence
techniques for clustering the folksonomy. The focus of those works is on get-
ting an overview of social resource sharing systems and an overall insight in
the folksonomy structure.
More recently, work on more specialized topics such as structure mining on
folksonomies—e.g. to visualize trends [21] and patterns [59] in users’ tagging
behavior has been presented. Along those lines of research are articles on
analyzing the semiotic dynamics of the tagging vocabulary [15], or examining
the dynamics and semantics of folksonomy systems [27]. Those approaches

Deliverable D5.1 Version 1.1 6

NEPOMUK 29.06.2007

focus on using standard analysis methods to visualize properties of folksono-
mies. They are a good starting point for developing specialized algorithms
for folksonomy analysis but don’t provide robust techniques, e.g., to extract
clusters automatically. In [30] we presented how an adaptation of the PageR-
ank [11] algorithm can be used for ranking folksonomy contents. The algo-
rithm presented there is the basis for the community detection work done
by the Community Manager and is described in detail in Section 5. It allows
unsupervised extraction of communities of users from folksonomies.
Another upcoming field of research is the learning of more formal, usually hier-
archical conceptual structures (i.e. taxonomies, ontologies) from folksonomies,
which has been approached using different mining techniques [48, 60, 29, 36].
One other approach for social network analysis is Formal Concept Analysis
(FCA), a mathematical theory for deriving concept hierarchies from data. The
amount of publications on Formal Concept Analysis is large. A good starting
point for the lecture are the textbooks [26, 14, 25], as well as the proceedings
of the Intl. Conference on Formal Concept Analysis9 and the Intl. Conference
on Conceptual Structures10 series.
The problem of mining frequent itemsets arose first as a sub-problem of min-
ing association rules [1], but it then turned out to be present in a variety
of problems: mining sequential patterns [3], episodes [42], association rules
[2], correlations [62], multi-dimensional patterns [32, 39], maximal itemsets
[6, 75, 40], closed itemsets [68, 51, 52, 54].
The first algorithm based on the combination of association rule mining with
FCA was Close [51], followed by A-Close [52], ChARM [74], Pascal [5], Closet [54],
and Titanic [65], each having its own way to exploit the equivalence relation
which is hidden in the data. Many algorithms can be found at the Frequent
Itemset Mining Implementations Repository.11

Beside closed itemsets, other condensed representations have been studied:
key sets [5]/free sets [10], non-derivable itemsets [13], δ-free sets, disjunc-
tion free sets [12], and k-free sets [58]. Closed itemsets and other condensed
representations can be used for defining bases of association rules [66, 53].
Following the initial paper [37] by Lehmann and Wille, several researchers
started to analyse the mathematical properties of trilattices, e. g., [7, 8, 9, 18,
24, 71, 72].
[37] and [18] present several ways to project a triadic context to a dyadic one.
[64] presents a model for navigating a triadic context by visualising concept
lattices of such projections. The idea of deriving dyadic contexts from the
triadic one is not new and has been presented by Lehmann and Wille in [38],
for instance. However, none of the aforementioned works tackled the problem
of developing an algorithm for mining tri-concepts in triadic contexts.

3.3 (Semi-) Automatic Metadata Alignment

The need for aligning different ontologies or schemas have been long noticed
by the knowledge engineers and database communities. In ontology align-
ment the aim is to find correspondences between elements of two different
ontologies. There is a lot of previous work on developing such alignments in
different contexts, such as knowledge representation, machine learning and
schema integration. We first briefly describe some of the existing methods
and then describe some specific systems or algorithms using them. For more
thorough surveys the interested reader is referred to [57],[61],[76].
9 http://www.informatik.uni-trier.de/~ley/db/conf/icfca/
10 http://www.informatik.uni-trier.de/~ley/db/conf/iccs/
11 http://fimi.cs.helsinki.fi/

Deliverable D5.1 Version 1.1 7

http://www.informatik.uni-trier.de/~ley/db/conf/icfca/
http://www.informatik.uni-trier.de/~ley/db/conf/iccs/
http://fimi.cs.helsinki.fi/

NEPOMUK 29.06.2007

Alignment approaches can be classified based on the information types they
use. Two types of information can be used to infer mappings between ontolo-
gies:

• Ontology-based information

• Instance-based information

Approaches which use the ontologies themselves and not instance data, rely
on two types of evidences: the first are the similarity measures between in-
dividual concepts of the two ontologies. These similarity measures can be
either textual and linguistic based or constraint based. Names or descriptions
of concepts are compared in order to assess their similarities. Various simi-
larity measures exist for evaluating the similarity between strings which can
be used in this context. Linguistic approaches also rely on auxiliary informa-
tion such as dictionaries. Constraint based approaches use the constraints
on elements to determine the similarity of ontology elements. The second
type of evidences that ontology-based approaches utilize are the structure or
topology information of the ontologies. The graph representations of the two
ontologies are used in these approaches.
Constraints such as foreign keys can be used in instance based approaches.
A good heuristic in these approaches is that if the instances of certain classes
of two ontologies are similar, these two classes have a higher probability of
being mapped to one another. However the mapping problem arises here
again, in order to determine the similarity of two objects formulated in terms
of different ontologies, first the ontologies need to be mapped. However, since
in many applications ontologies are just used to manage annotations and not
the real instances, other classifier functions can be used. For example if the
instances are documents, information retrieval methods could be applied to
measure their similarities. In the following we explain some algorithms and
systems which have been devised for metadata alignment.
Anchor-Prompt algorithm [50] is a hybrid method. It takes as input two on-
tologies and a set of anchor-pairs of related items. These anchor-pairs could
either be identified by textual techniques or explicitly by the user. They are
then refined based on the structure of the two input ontologies. For each
of the ontologies a directed labeled graph is constructed. The nodes in this
graph are the concepts, and edges between them are the relationships be-
tween these concepts. The paths in the sub-graphs limited by the anchors are
analyzed. The concepts which frequently appear in similar position of similar
paths are also considered as semantically similar.
Similarity flooding [46] is actually a graph matching algorithm. The main idea
in this algorithm is that similarity values can be transferred from a concept
to its neighboring concepts. To implement this idea, the two input ontologies
are first translated into directed labeled graphs. Then from these two graphs
a third labeled graph is constructed. The set of nodes in this graph is the
cartesian product of the sets of nodes of the ontology graphs. There is a
label l between nodes (x1, y1) and (x2, y2) if there was both an edge labeled
l between x1 and x2 , and between y1 and y2 in the ontology graphs. Some
initial similarity values are assigned to each node, based on the similarity of it
corresponding concepts in the two ontology graphs. In each iteration of the
algorithm, new similarity values are calculated for each node as a function of
similarities of it neighboring nodes. The algorithm terminates after a certain
number of steps or when the similarity values converge and do not change
more than a predefined threshold.
LSD [20] employs machine learning for schema matching. Different learners
are used to exploit different type of information available. A meta-learner is

Deliverable D5.1 Version 1.1 8

NEPOMUK 29.06.2007

then used to aggregate the results of the previous learners. LSD requires
examples of mappings between different ontologies as the training sets for its
learners.
We use both types of evidence in our work to induce mappings. Our work
can be regarded as exploiting all available approaches and aggregating their
innovations.

Deliverable D5.1 Version 1.1 9

NEPOMUK 29.06.2007

4 Community Support Architecture

The realization of the Social Semantic Desktop epitomized by NEPOMUK is
based on an architecture where components encapsulate well-defined pieces
of functionality (cf. Figure 1). In the final state of the project there will exist
for each component at least one implementation which provides the function-
alities that describe the component. One such component is the RDF store
which provides the functionality to store, query and retrieve information in
RDF format. In the figure it is depicted in the lower left section. Furthermore,
this diagram also gives an overview of how the components’ are assigned to
different workpackages

Figure 1: NEPOMUK Components

The diagram also shows how the components Community Manager and Meta-
data Aligner12 of this deliverable are integrated into the NEPOMUK component
architecture. It can be seen that both components access the RDF Store via
the Data Services component which also allows access of the Distributed In-
dex or the Binary Store. This ensures that all data is accessed in a generic
way and thus it eases the exchange of components like the RDF Store. As
said, the idea behind this principle is that implementations of all components
should be easily exchangeable. The functionality which is provided by Com-
munity Manager and Metadata Aligner is exposed to the other components
and applications of the Social Semantic Desktop via the Web Server shown
above the components. Through the use of SOAP requests it facilitates the
implementation independent communication across components and native
desktop applications.
A more architecture driven diagram shows Figure 2. There the communication
across components is ensured by the Local Service Interface which by its
Service Registry and Matchmaker allows components to find implementations
of other components.
The community support architecture of WP5000 is conceptually integrated into
12 The Metadata Aligner is depicted there as Metadata Aligners & Ontology Evolution.

Deliverable D5.1 Version 1.1 10

NEPOMUK 29.06.2007

Figure 2: Community Manager (4) and Metadata Alignment (9) in the NEPO-
MUK architecture.

the NEPOMUK component architecture as components Community Manager,
Metadata Aligner, Metadata Recommender and Social Ranker. Their inter-
action and affiliation to the deliverables D5.1, D5.2 and D5.3 of WP5000 is
depicted in Figure 3.

D5.2
D5.3

SocialRanker CommunityManager MetadataAligner

MetadataRecommender

D5.1

Figure 3: Interaction of components from WP5000 and their affiliation to the
deliverables.

In the picture a straight line shows that a component gives input to other
components of WP5000, a necessary condition for them to work, while the
dotted line shows optional input the Metadata Recommender might receive
from the Social Ranker. The inner box depicts that the components belonging
to deliverable D5.1 are the Community Manager and the Metadata Aligner.
As it can be seen, a central role for all components in WP5000 is played by
the Community Manager whose results are used as input for the three other
components.
Summarized, this deliverable provides community detection and metadata
alignment functionality which can be integrated into other components. Al-
though they are not applications on their own, they form an infrastructure
which can be adopted and used by other applications.

Deliverable D5.1 Version 1.1 11

NEPOMUK 29.06.2007

4.1 Community Manager

In deliverable D5.1 the functionality provided by the component Community
Manager consists of detecting and labeling communities of users. In general,
the component analyzes the folksonomy structure found in the network of
NEPOMUK peers and provides methods for other components or applications
to access the results. This section provides an overview on what concrete
methods the component provides, how it is integrated into the NEPOMUK
architecture, and what its dependencies to other components are.

4.1.1 Service Description

In Table 1 the WSDL document describing the functionality of the Commu-
nity Manager—how to call it, which data structures to send and to expect—is
shown. The WSDL document is the “contract” which components have to
agree upon when they want to interact with the Community Manager. It de-
fines the structure of the input and output messages, the offered methods and
a concrete endpoint of a Community Manager implementation which is willing
to fulfill this contract.
The service description starts with the obligatory namespace declarations and
defines in lines 9 to 39 the XML Schema for the types underlying the mes-
sages used to communicate with Community Manager. These XML Schema
definitions are utilized to automatically generate Java classes and to serialize
those classes in an XML representation complying to that schema. The seri-
alization is used to compose the SOAP messages that are sent between the
components.
All of the types Tag, User and Community are described by an URI and a
human readable and identifiable string. In the case of User this is the user’s
name and for Tag, the tag itself. Furthermore, the Community type contains
two lists: a list of users, which represent the community and a list of tags
which label the community with its main topics.
Proceeding with the WSDL description, it contains in lines 50 to 55 the spec-
ification on how to call the Community Manager. A call to “GetCommunity”
requires as input (lines 41–44) a user name or a tag. Hence, it is possible to
find a community of users related to a specific topic or otherwise ask for users
around a given user. The resulting output is a community as described in the
type definitions seen before.
Finally, lines 57 to 70 define a binding which allows components to access a
Community Manager implementation via SOAP requests. The concrete imple-
mentation is reachable on the local desktop via HTTP at http://localhost:
8181/soap/CommunityManager.

4.1.2 Architecture

To accomplish the community detection and labeling tasks we implemented
the FolkRank algorithm described in Section 5.3. Since analysis is hardly pos-
sible in a distributed manner and might influence the performance of the
individual peers, we decided to distribute the work necessary for community
detection. We divided the data gathering part from the analysis part such that
each peer in the distributed network collects relevant data from its RDF repos-
itory and sends it to a special peer which we call “FolkPeer”. It is the task
of this latter then to analyze the data, detect communities and label them,

Deliverable D5.1 Version 1.1 12

http://localhost:8181/soap/CommunityManager
http://localhost:8181/soap/CommunityManager

NEPOMUK 29.06.2007

Table 1: WSDL describing the functionality of the Community Manager.

1 <?xml version="1.0" encoding="utf-8" ?>
2 <definitions name="CommunityManager"
3 targetNamespace="http://www.semanticdesktop.org/wsdl/2007/02/09/CommunityManager.wsdl"
4 xmlns:tns="http://www.semanticdesktop.org/wsdl/2007/02/09/CommunityManager.wsdl"
5 xmlns="http://schemas.xmlsoap.org/wsdl/"
6 xmlns:xmlschema="http://www.w3.org/2001/XMLSchema"
7 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
8

9 <types>
10 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
11 targetNamespace="http://www.semanticdesktop.org/wsdl/2007/02/09/CommunityManager.wsdl">
12

13 <xs:complexType name="User"><xs:all>
14 <xs:element name="uri" type="xs:anyURI" />
15 <xs:element name="name" type="xs:string" />
16 </xs:all></xs:complexType>
17

18 <xs:complexType name="Tag"><xs:all>
19 <xs:element name="uri" type="xs:anyURI" />
20 <xs:element name="name" type="xs:string" />
21 </xs:all></xs:complexType>
22

23 <xs:complexType name="UserList"><xs:sequence>
24 <xs:element name="user" minOccurs="0" maxOccurs="unbounded" type="tns:User" />
25 </xs:sequence></xs:complexType>
26

27 <xs:complexType name="TagList"><xs:sequence>
28 <xs:element name="tag" minOccurs="0" maxOccurs="unbounded" type="tns:Tag" />
29 </xs:sequence></xs:complexType>
30

31 <xs:complexType name="Community"><xs:all>
32 <xs:element name="uri" type="xs:anyURI" />
33 <xs:element name="name" type="xs:string" />
34 <xs:element name="users" type="tns:UserList" />
35 <xs:element name="tags" type="tns:TagList" />
36 </xs:all></xs:complexType>
37

38 </xs:schema>
39 </types>
40

41 <message name="GetCommunityRequest">
42 <part name="user" type="tns:User" />
43 <part name="tag" type="tns:Tag" />
44 </message>
45

46 <message name="GetCommunityResponse">
47 <part name="community" type="tns:Community" />
48 </message>
49

50 <portType name="CommunityManagerApi">
51 <operation name="GetCommunity">
52 <input message="tns:GetCommunityRequest" />
53 <output message="tns:GetCommunityResponse" />
54 </operation>
55 </portType>
56

57 <binding name="CommunityManagerSoapBinding" type="tns:CommunityManagerApi">
58 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
59 <operation name="GetCommunity">
60 <soap:operation soapAction=""/>
61 <input><soap:body use="literal"/></input>
62 <output><soap:body use="literal"/></output>
63 </operation>
64 </binding>
65

66 <service name="CommunityManager">
67 <port name="CommunityManagerPort" binding="tns:CommunityManagerSoapBinding">
68 <soap:address location="http://localhost:8181/soap/CommunityManager"/>
69 </port>
70 </service>
71

72 </definitions>

Deliverable D5.1 Version 1.1 13

NEPOMUK 29.06.2007

and make available the results to all the peers in the network. We decided to
call this peer “FolkPeer”, since the underlying structure we are using for the
analysis is a folksonomy and this peer finds communities of users inside a folk-
sonomy. It is this division of tasks that makes efficient mining of communities
in the NEPOMUK P2P network possible.
The distribution of tasks between Community Manager and FolkPeer is thus:

• CommunityManager

◦ runs on every peer in the network,
◦ receives requests of components or desktop applications for com-
munity information and forwards them to the FolkPeer,

◦ selects and collects data from the RDF repository and sends it to
the FolkPeer,

◦ reacts upon changes in the RDF repository.

• FolkPeer

◦ runs on a distinguished peer in the network,
◦ upon request, sends community information to peers,
◦ receives data from the peers and collects it in a data warehouse,
◦ analyzes the data and stores the results.

4.1.3 Gathering Data

In order to collect the necessary data for the analysis on the FolkPeer, the
Community Manager of a peer needs to extract relevant information from the
users RDF repository and send it to the FolkPeer. The tagging data is repre-
sented in the RDF repository by the vocabulary of the NEPOMUK Annotation
Ontology (NAO).13

Figure 4: Tagging as modeled in NAO.

Tagging is modeled in NAO with the “hasTag” relation, as can be seen in
Figure 4. It relates a resource to another resource of class “Tag” which has
attached a user readable string by the properties “prefLabel” or “altLabel”.
The relevant (resource, tag) tuples are received from the RDF repository by a
SPARQL query (cf. Figure 5) and together with the user name sent serialized
as XML to the FolkPeer. The FolkPeer then updates its data warehouse and
schedules a recomputation of the communities.
13 The current working draft of NAO is available at
http://svn.nepomuk.semanticdesktop.org/repos/trunk/taskforce/TF-Ont/draft/NAO/NAO.html.

Deliverable D5.1 Version 1.1 14

http://svn.nepomuk.semanticdesktop.org/ repos/trunk/ taskforce/TF-Ont/ draft/NAO/NAO.html

NEPOMUK 29.06.2007

PREFIX nao: <http://www.semanticdesktop.org/ontologies/2007/03/nao#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?url ?tag

WHERE { ?url nao:hasTag ?y . ?y nao:prefLabel ?tag . ?y rdf:type nao:Tag }

Figure 5: Example SPARQL query used to gather tagging data.

4.1.4 Relation to other components

In a system like NEPOMUK where tasks are distributed among components,
naturally, also the Community Manager depends on services provided by other
workpackages’ components. Hence, we will here provide an overview on the
components necessary for the Community Manager to run.

Middleware. The middleware provides essential functionalities to register,
detect and call services, allows to easily expose features via SOAP, and pro-
vides human interaction with components via HTML interfaces. All those fea-
tures are intensively used by the Community Manager. Upon startup it regis-
ters itself to the middleware, such that other components can find and use it;
when a request to the RDF repository is necessary, the middleware delivers
an implementation of it; the functionality of the small application Community
Client is exposed to the user via the middleware’s webserver; and finally, the
SOAP connector of the Community Manager is provided by the middleware.
This allows applications and components running outside the middleware to
access the Community Manager via HTTP.

RDF Repository. The RDF Repository plays the central role in gathering
data for the community analysis. It stores all the information relevant for the
algorithms to detect communities. Hence, the Community Manager uses it to
collect those pieces of data. This is done by querying the repository with the
SPARQL interface it provides. Furthermore, all configuration parameters for
the Community Manager are stored in the RDF Repository’s “config” area.

PIMOService. The PIMOService (amongst other things) provides methods
to identify the user (i. e., get the user name) and to generate unique identi-
fiers for resources. Thus it helps Community Manager to distinguish users,
resources and tags.

Components delivering data as input for analysis. Components like the
Wiki, the Personal Task Manager or the Data Wrapper are one of the main
providers of metadata stored in the RDF Repository. Among them, user an-
notated resources necessary for the analysis are widely available. The Wiki
allows users to tag pages, the Task Manager to assign keywords to tasks,
meetings, etc., and the Data Wrapper might gather the users bookmarks from
an existing folksonomy service or extract keywords from BibTEX files.

4.1.5 Invocation Example

The Java code snippet in Table 2 shows how to invoke the Community Man-
ager with Java on the OSGi platform. The method getCommunityManager
requests in line 30 a reference to an implementation of the Community Man-
ager interface from the bundle context. If an implementation is found, it is

Deliverable D5.1 Version 1.1 15

NEPOMUK 29.06.2007

casted to the interface CommunityManager and returned (line 35). Such a
reference is in line 18 used to request the community for the given user and
subsequently print all users belonging to the community (lines 23-25).

Table 2: Example Java Code invoking Community Manager.

1 public class Example {
2

3 private BundleContext bc;
4

5 public Example(BundleContext context) {
6 this.bc = context;
7 }
8

9 public void printCommunityOfUser(String user) throws Exception {
10 CommunityManager service = getCommunityManager();
11

12 User user = new User();
13 user.setName(requUser);
14

15 /*
16 * get Community Manager instance
17 */
18 Community community = service.getCommunity(user);
19

20 /*
21 * print names of users in community of user
22 */
23 for (User comUser: community.getUsers().getUser()) {
24 System.out.println(comUser.getName());
25 }
26

27 }
28

29 private CommunityManager getCommunityManager() throws Exception {
30 ServiceReference sr =
31 bc.getServiceReference(CommunityManager.class.getName());
32 if (sr == null) {
33 log.fatal("Could not find CommunityManager - aborting.");
34 throw new Exception("No CommunityManager found");
35 }
36 return (CommunityManager) bc.getService(sr);
37 }
38 }

4.2 Metadata Alignment

The Metadata Alignment component is responsible for generating a mapping
between two given ontologies. It provides this functionality by aggregating
evidences based on different measures. In this section we give an overview
of the methods this component provides, its integration into the NEPOMUK
architecture and its relation to other NEPOMUK components.

4.2.1 Service Description

The WSDL describing the functionality of the Metadata Alignment is shown in
Table 3
Similar to the CommunityManager wsdl file, the service description starts with
the obligatory namespace declarations and defines in lines 14 to 55 the XML
Schema for the types underlying the messages used to communicate with
Metadata alignment. For example the type “CreateGenericAlignment” which
is part of the “CreatGenericAlignmentRequest” message is a sequence of two
Models as defined in http://model.rdf2go.ontoware.org both of which occur

Deliverable D5.1 Version 1.1 16

NEPOMUK 29.06.2007

Table 3: WSDL describing the functionality of Metadata Alignment.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <wsdl:definitions
3 targetNamespace="http://nepomuk.semanticdesktop.org/comp/PhaseAlignment.wsdl"
4 xmlns:tns="http://nepomuk.semanticdesktop.org/comp/PhaseAlignment.wsdl"
5 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
6 xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
7 xmlns:ns1="http://model.rdf2go.ontoware.org"
8 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
9 xmlns:soapenc11="http://schemas.xmlsoap.org/soap/encoding/"

10 xmlns:soapenc12="http://www.w3.org/2003/05/soap-encoding"
11 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
12 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
13

14 <wsdl:types>
15 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" attributeFormDefault="qualified"
16 elementFormDefault="qualified"
17 targetNamespace="http://nepomuk.semanticdesktop.org/comp/PhaseAlignment.wsdl">
18 <xsd:element name="createGenericAlignment">
19 <xsd:complexType>
20 <xsd:sequence>
21 <xsd:element maxOccurs="1" minOccurs="1" name="in0" nillable="true"
22 type="ns1:Model"/>
23 <xsd:element maxOccurs="1" minOccurs="1" name="in1" nillable="true"
24 type="ns1:Model"/>
25 </xsd:sequence>
26 </xsd:complexType>
27 </xsd:element>
28 <xsd:element name="createGenericAlignmentResponse">
29 <xsd:complexType>
30 <xsd:sequence>
31 <xsd:element maxOccurs="1" minOccurs="1" name="out" nillable="true"
32 type="ns1:Model"/>
33 </xsd:sequence>
34 </xsd:complexType>
35 </xsd:element>
36 <xsd:element name="createPIMOAlignment">
37 <xsd:complexType>
38 <xsd:sequence>
39 <xsd:element maxOccurs="1" minOccurs="1" name="in0" nillable="true"
40 type="xsd:string"/>
41 <xsd:element maxOccurs="1" minOccurs="1" name="in1" nillable="true"
42 type="xsd:string"/>
43 </xsd:sequence>
44 </xsd:complexType>
45 </xsd:element>
46 <xsd:element name="createPIMOAlignmentResponse">
47 <xsd:complexType>
48 <xsd:sequence>
49 <xsd:element maxOccurs="1" minOccurs="1" name="out" nillable="true"
50 type="xsd:string"/>
51 </xsd:sequence>
52 </xsd:complexType>
53 </xsd:element>
54 </xsd:schema>
55 </wsdl:types>
56

57 <wsdl:message name="createPIMOAlignmentRequest">
58 <wsdl:part name="parameters" element="tns:createPIMOAlignment"/>
59 </wsdl:message>
60 <wsdl:message name="createGenericAlignmentRequest">
61 <wsdl:part name="parameters" element="tns:createGenericAlignment"/>
62 </wsdl:message>
63 <wsdl:message name="createPIMOAlignmentResponse">
64 <wsdl:part name="parameters" element="tns:createPIMOAlignmentResponse"/>
65 </wsdl:message>
66 <wsdl:message name="createGenericAlignmentResponse">
67 <wsdl:part name="parameters" element="tns:createGenericAlignmentResponse"/>
68 </wsdl:message>
69

70 <wsdl:portType name="PhaseAlignmentPortType">
71 <wsdl:operation name="createGenericAlignment">
72 <wsdl:input name="createGenericAlignmentRequest"
73 message="tns:createGenericAlignmentRequest"/>
74 <wsdl:output name="createGenericAlignmentResponse"
75 message="tns:createGenericAlignmentResponse"/>
76 </wsdl:operation>
77 <wsdl:operation name="createPIMOAlignment">
78 <wsdl:input name="createPIMOAlignmentRequest"
79 message="tns:createPIMOAlignmentRequest"/>
80 <wsdl:output name="createPIMOAlignmentResponse"
81 message="tns:createPIMOAlignmentResponse"/>
82 </wsdl:operation>
83 </wsdl:portType>

Deliverable D5.1 Version 1.1 17

NEPOMUK 29.06.2007

Table 4: WSDL describing the functionality of Metadata Alignment (cont.).

84 <wsdl:binding name="PhaseAlignmentHttpBinding" type="tns:PhaseAlignmentPortType">
85 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
86 <wsdl:operation name="createGenericAlignment">
87 <wsdlsoap:operation soapAction=""/>
88 <wsdl:input name="createGenericAlignmentRequest">
89 <wsdlsoap:body use="literal"/>
90 </wsdl:input>
91 <wsdl:output name="createGenericAlignmentResponse">
92 <wsdlsoap:body use="literal"/>
93 </wsdl:output>
94 </wsdl:operation>
95 <wsdl:operation name="createPIMOAlignment">
96 <wsdlsoap:operation soapAction=""/>
97 <wsdl:input name="createPIMOAlignmentRequest">
98 <wsdlsoap:body use="literal"/>
99 </wsdl:input>
100 <wsdl:output name="createPIMOAlignmentResponse">
101 <wsdlsoap:body use="literal"/>
102 </wsdl:output>
103 </wsdl:operation>
104 </wsdl:binding>
105

106 <wsdl:service name="PhaseAlignment">
107 <wsdl:port name="PhaseAlignmentHttpPort" binding="tns:PhaseAlignmentHttpBinding">
108 <wsdlsoap:address location="http://localhost:8181/soap/PhaseAlignment"/>
109 </wsdl:port>
110 </wsdl:service>
111

112 </wsdl:definitions>

exactly once.
Lines 70 to 83 describe specifications of calling the metadata aligner. For
example a call to “createGenericAlignment” requires as input a “createGener-
icAlignmentRequest” as defined in lines 60 to 62 and outputs “createGeneri-
cAlignmentRequest” as defined in lines 66 to 68. Therefore it is possible to
generate an alignment between two ontologies by calling “createGenericAlign-
ment”.
Finally, lines starting at 84 define a binding which allows components to access
a Metadata alignment implementation via SOAP requests. The concrete imple-
mentation is reachable on the local desktop via HTTP at http://localhost:
8181/soap/PhaseAlignment.

4.2.2 Architecture of Metadata Alignment

Since existing ontology languages like RDF/S or OWL do not fulfill all require-
ments given on a Semantic Desktop, a new language, PIMO is used in NEPO-
MUK. The language contains a core upper ontology, defining basic classes for
things, concepts, resources, persons, etc. and also stops at these basic enti-
ties. Extending the ontology definitions of classes and relations is possible by
PIMO-domain ontologies. The core application area of the PIMO-language is
to allow individual persons to express their own mental models in a structured
way, the different mental models can then be integrated based on matching
algorithms or on domain ontologies. Based on the core upper ontology ele-
ments, each user can extend his personal mental model in an open manner.
Currently the metadata alignment component does not use the PIMOService,
but in future it should use it to access PIMO ontologies stored by the users.
The work in metadata alignment is divided between three main modules. The
Ontology Adapter module basically allows the component to access ontologies
represented in different languages. As described in section 6, two ontologies

Deliverable D5.1 Version 1.1 18

http://localhost:8181/soap/PhaseAlignment
http://localhost:8181/soap/PhaseAlignment

NEPOMUK 29.06.2007

Figure 6: Architecture of Metadata Alignment

are aligned by gathering similarity measures based on different evidences
and aggregating them. Thus the second module of the metadata alignment
provides different similarity measures. The third module is the Alignment Gen-
erator, which takes as input the available Similarity Measures and aggregates
them in a specific manner. The output is a mapping between the two input on-
tologies expressed as mapping ontology facts. A simple view of the metadata
alignment component and its three modules and their relationships is shown
in figure 6.

4.2.3 Relation to other components

PIMOService. The PimoService component stores personal information mod-
els and allows qualified access to the personal information model. Our meta-
data alignment component should use this component to access PIMOs.

Middleware. The NEPOMUK middleware manages the registration and call-
ing of all services provided in NEPOMUK. The metadata aligner registers itself
to the middleware at startup enabling other components to find and use it.
Upon a request to PimoService, an implementation of this service will be pro-
vided by middleware.

Deliverable D5.1 Version 1.1 19

NEPOMUK 29.06.2007

5 Community Detection

To accomplish the community detection and labeling task provided by the Com-
munityManager and its complement, the FolkPeer, we describe here how the
folksonomy structure of the NEPOMUK network can be analyzed to detect com-
munities of users within the network. We start by introducing social resource
sharing systems and formalize the underlying datastructure called folksonomy.
Then we present the FolkRank algorithm and its application to community de-
tection, followed by a description of the Trias algorithm for mining frequent
closed tri-sets of a folksonomy.14

5.1 Social Resource Sharing and Folksonomies

Social resource sharing systems are web-based systems that allow users to
upload their resources, and to label them with arbitrary words, so-called tags.
The systems can be distinguished according to what kind of resources are sup-
ported. Flickr, for instance, allows the sharing of photos, del.icio.us the sharing
of bookmarks, CiteULike15 and Connotea16 the sharing of bibliographic refer-
ences, and 43Things17 even the sharing of goals in private life. BibSonomy,18

allows to share simultaneously bookmarks and BibTEX entries.
In their core, these systems are all very similar. Once a user is logged in, he
can add a resource to the system, and assign arbitrary tags to it. The collec-
tion of all his assignments is his personomy, the collection of all personomies
constitutes the folksonomy. The user can explore his personomy, as well as
the personomies of the other users, in all dimensions: for a given user one can
see all resources he had uploaded, together with the tags he had assigned to
them; when clicking on a resource one sees which other users have uploaded
this resource and how they tagged it; and when clicking on a tag one sees
who assigned it to which resources.

A Formal Model for Folksonomies A folksonomy describes the users, re-
sources, and tags, and the user-based assignment of tags to resources. We
present here a formal definition of folksonomies.
A folksonomy is a tuple F := (U, T,R, Y,≺) where

• U , T , and R are finite sets, whose elements are called users, tags and
resources, resp.,

• Y is a ternary relation between them, i. e., Y ⊆ U × T × R, called tag
assignments (TAS for short), and

• ≺ is a user-specific subtag/supertag-relation, i. e., ≺⊆ U × T × T , called
subtag/supertag relation.

The personomy Pu of a given user u ∈ U is the restriction of F to u, i. e.,
Pu := (Tu, Ru, Iu,≺u) with Iu := {(t, r) ∈ T × R | (u, t, r) ∈ Y }, Tu := π1(Iu),
Ru := π2(Iu), and ≺u:= {(t1, t2) ∈ T × T | (u, t1, t2) ∈≺}, where πi denotes
the projection on the ith dimension.
Users are typically described by their user ID, and tags may be arbitrary
strings. What is considered as a resource depends on the type of system. For
instance, in del.icio.us, the resources are URLs, and in Flickr, the resources
14 The FolkRank has first been published in [30], TRIAS in [31].
15 http://www.citeulike.org/ 16 http://www.connotea.org/
17 http://www.43things.com/ 18 http://www.bibsonomy.org

Deliverable D5.1 Version 1.1 20

http://www.citeulike.org/
http://www.connotea.org/
http://www.43things.com/
http://www.bibsonomy.org

NEPOMUK 29.06.2007

are pictures. On the social semantic desktop resources range from files (doc-
uments, music, pictures) over e-mails and wiki pages to arbitrary resources
which can be referenced by URIs like URLs, document authors, other users,
or project tasks.
In the described analysis approach, we do not make use of the subtag/supertag
relation for sake of simplicity. I. e., ≺= ∅, and we will simply note a folkso-
nomy as a quadruple F := (U, T,R, Y). This structure is known in Formal
Concept Analysis [70, 26] as a triadic context [38, 64]. An equivalent view
on folksonomy data is that of a tripartite (undirected) hypergraph G = (V,E),
where V = U ∪̇T ∪̇R is the set of nodes, and E = {{u, t, r} | (u, t, r) ∈ Y } is
the set of hyperedges.
For convenience we also define, for all u ∈ U and r ∈ R, tags(u, r) := {t ∈ T |
(u, t, r) ∈ Y }, i. e., tags(u, r) is the set of all tags that user u has assigned to
resource r. The set of all posts of the folksonomy is then P := {(u, S, r) | u ∈
U, r ∈ R,S = tags(u, r)}. Thus, each post consists of a user, a resource and
all tags that this user has assigned to that resource.

5.2 Adapting PageRank for Folksonomies

A community of users surrounding a user or relevant to a given topic can
technically be described as a set of users which have a low distance to the
given user or topic. Thus, a method that can compute distances between
users or between users and topics allows to form communities by ordering
the users according to their distance and then regarding the closest users
as members of a community. One such method is ranking: if we rank the
relevance of users to a given tag, the rank of a user can be interpreted as the
distance between the user and the tag. Similiarly, we can compute distances
between users by ranking users according to their relevance for a given user.
A community can then be extracted by regarding the top users of the ranking
only.
Using ranking for community detection has some advantage: we can affect
the size of the community as neccessary for the relevant application. Thus,
applications can decide how many users of the community they use—the task
manager might highlight only few (five to ten) relevant persons while other
applications need more. Nevertheless, the Community Manager does not re-
turn all users of the network, since FolkRank gives a natural way to cut the set
of users into users which belong to the community and which do not belong to
it. We will see at the end of Section 5.3 how this is possible. Furthermore, a
user can be in several communities at the same time—with different degrees
of confidence for each, depending on the particular rank of the user. Hence,
applications can present the user several communities he is in and along the
way support different aspects of his interest.
In the previous Section 5.1 we have shown that a folksonomy induces a
graph structure. We will exploit that structure for ranking in this section.
Our FolkRank algorithm is inspired by the seminal PageRank algorithm [11].
The PageRank weight-spreading approach cannot be applied directly on folk-
sonomies because of the different nature of folksonomies compared to the
web graph (undirected triadic hyperedges instead of directed binary edges).
In the following we discuss how to overcome this problem.

Adaptation of PageRank
We implement the weight-spreading ranking scheme on folksonomies in two
steps. First, we transform the hypergraph between the sets of users, tags,
and resources into an undirected, weighted, tripartite graph. On this graph,
we apply a version of PageRank that takes into account the edge weights.

Deliverable D5.1 Version 1.1 21

NEPOMUK 29.06.2007

Converting the Folksonomy into an Undirected Graph. First we convert
the folksonomy F = (U, T,R, Y) into an undirected tripartite graph GF =
(V,E) as follows.

1. The set V of nodes of the graph consists of the disjoint union of the sets
of tags, users and resources: V = U ∪̇T ∪̇R. (The tripartite structure of
the graph can be exploited later for an efficient storage of the – sparse
– adjacency matrix and the implementation of the weight-spreading iter-
ation in the FolkRank algorithm.)

2. All co-occurrences of tags and users, users and resources, tags and
resources become undirected, weighted edges between the respective
nodes: E = {{u, t}, {t, r}, {u, r} | (u, t, r) ∈ Y }, with each edge {u, t}
being weighted with |{r ∈ R : (u, t, r) ∈ Y }|, each edge {t, r} with |{u ∈
U : (u, t, r) ∈ Y }|, and each edge {u, r} with |{t ∈ T : (u, t, r) ∈ Y }|.

tag

resource

user

tag

resource

user

Figure 7: Converting a hyperedge into three edges.

Folksonomy-Adapted Pagerank. The original formulation of PageRank [11]
reflects the idea that a page is important if there many pages linking to it, and
if those pages are important themselves. The distribution of weights can thus
be described as the fixed point of a weight passing scheme on the web graph.
This idea was extended in a similar fashion to bipartite subgraphs of the web
in HITS [33] and to n-ary directed graphs in [73]. We employ the same un-
derlying principle for our ranking scheme in folksonomies. The basic notion
is that a resource which is tagged with important tags by important users be-
comes important itself. The same holds, symmetrically, for tags and users.
Thus we have a graph of vertices which are mutually reinforcing each other
by spreading their weights.
Like PageRank, we employ the random surfer model, a notion of importance
for web pages that is based on the idea that an idealized random web surfer
normally follows hyperlinks, but from time to time randomly jumps to a new
webpage without following a link. This results in the following definition of
the rank of the vertices of the graph the entries in the fixed point ~w of the
weight spreading computation ~w ← dA~w + (1 − d)~p, where ~w is a weight
vector with one entry for each web page, A is the row-stochastic19 version of
the adjacency matrix of the graph GF defined above, ~p is the random surfer
component, and d ∈ [0, 1] is determining the influence of ~p. In the original
PageRank, ~p is used to outweigh the loss of weight on web pages without
outgoing links. Usually, one will choose ~p = 1, i. e., the vector composed by
1’s. In order to compute personalized PageRanks, however, ~p can be used to
express user preferences by giving a higher weight to the components which
represent the user’s preferred web pages.
Formally, we spread the weight as follows:

~w ← α~w + βA~w + γ~p (1)

where A is the row-stochastic version of the adjacency matrix of GF, ~p is a
preference vector, α, β, γ ∈ [0, 1] are constants with α+β+γ = 1. The constant
19 I. e., each row of the matrix is normalized to 1 in the 1-norm.

Deliverable D5.1 Version 1.1 22

NEPOMUK 29.06.2007

α is intended to regulate the speed of convergence, while the proportion
between β and γ controls the influence of the preference vector.
We call the iteration according to Equation 1 – until convergence is achieved –
the Adapted PageRank algorithm. Note that, if ||~w||1 = ||~p||1 holds,20 the sum
of the weights in the system will remain constant. The influence of different
settings of the parameters α, β, and γ is discussed below.
As the graph GF is undirected, part of the weight that went through an edge
at moment t will flow back at t + 1. The results are thus rather similar (but
not identical) to a ranking that is simply based on edge degrees, as we will
see now. The reason for applying the more expensive PageRank approach
nonetheless is that its random surfer vector allows for topic-specific ranking,
as we will discuss in the next section.

Evaluation
In order to evaluate our retrieval technique, and because NEPOMUK data was
not yet available, we have analyzed the popular social bookmarking sytem
del.icio.us, which is a server-based system with a simple-to-use interface that
allows users to organize and share bookmarks on the internet. It is able to
store in addition to the URL a description, an extended description, and tags
(i. e., arbitrary labels).
For our experiments, we used data from the del.ico.us system we collected
in the following way. Initially we used wget starting from the top page of
del.ico.us to obtain nearly 6900 users and 700 tags as a starting set. Out of
this dataset we extracted all users and resources (i. e., del.icio.us’ MD5-hashed
urls). From July 27 to 30, 2005, we downloaded in a recursive manner user
pages to get new resources, and resource pages to get new users. Further-
more we monitored the del.icio.us start page to gather additional users and
resources. This way we collected a list of several thousand usernames which
we used for accessing the first 10000 resources each user had tagged. From
the collected data we finally took the user files to extract resources, tags,
dates, descriptions, extended descriptions, and the corresponding username.
We obtained a core folksonomy with |U | = 75, 242 users, |T | = 533, 191 tags
and |R| = 3, 158, 297 resources, related by in total |Y | = 17, 362, 212 TAS.21

After inserting this dataset into a MySQL database, we were able to perform
our evaluations, as described in the following sections.
As expected, the tagging behavior in del.icio.us shows a power law distribu-
tion, see Figure 8. This figure presents the percentage of tags, users, and
resources, respectively, which occur in a given number of TAS. For instance,
the rightmost ‘+’ indicates that a fraction of 2.19·10−6 of all tags (i. e. one tag)
occurs 415950 times—in this case it is the empty tag. The next ‘+’ shows that
one tag (“web”) occurs 238891 times, and so on. One observes that while
the tags follow a power law distribution very strictly, the plot for users and
resources levels off for small numbers of occurrences. Based on this obser-
vation, we estimate to have crawled most of the tags, while many users and
resources are still missing from the dataset. A probable reason is that many
users only try posting a single resource, often without entering any tags (the
empty tag is the most frequent one in the dataset), before they decide not to
use the system anymore. These users and resources are very unlikely to be
connected with others at all (and they only appear for a short period on the
del.icio.us start page), so that they are not included in our crawl.

Results for Adapted
PageRank We have evaluated the Adapted PageRank on the del.ico.us dataset described

in the previous section. As there exists no ‘gold standard ranking’ on these
20 . . . and if there are no rank sinks – but this holds trivially in our graph GF. 21 4,313 users
additionally organised 113,562 of the tags with 6,527 so-called bundles. The bundles will not be
discussed here; they can be interpreted as one level of the ≺ relation.

Deliverable D5.1 Version 1.1 23

NEPOMUK 29.06.2007

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

Pe
rc

en
ta

ge

Number of Occurrences

"Tags"
"Users"

"Resources"

Figure 8: Number of TAS occurrences for tags, users, resources in del.icio.us

data, we evaluate our results empirically.
First, we studied the speed of convergence. We let ~p := 1 (the vector having
1 in all components), and varied the parameter settings. In all settings, we
discovered that α 6= 0 slows down the convergence rate. For instance, for α =
0.35, β = 0.65, γ = 0, 411 iterations were needed, while α = 0, β = 1, γ = 0
returned the same result in only 320 iterations. It turns out that using γ as
a damping factor by spreading equal weight to each node in each iteration
speeds up the convergence considerably by a factory of approximately 10
(e. g., 39 iterations for α = 0, β = 0.85, γ = 0.15).
Table 5 shows the result of the adapted PageRank algorithm for the 20 most
important tags, users and resources computed with the parameters α =
0.35, β = 0.65, γ = 0 (which equals the result for α = 0, β = 1, γ = 0). Tags
get the highest ranks, followed by the users, and the resources. Therefore,
we present their rankings in separate lists.
As we can see from the tag table, the most important tag is “system:unfiled”
which is used to indicate that a user did not assign any tag to a resource.
It is followed by “web”, “blog”, “design” etc. This corresponds more or less
to the rank of the tags given by the overall tag count in the dataset. The
reason is that the graph GF is undirected. We face thus the problem that,
in the Adapted PageRank algorithm, weights that flow in one direction of an
edge will basically ‘swash back’ along the same edge in the next iteration.
Therefore the resulting is very similar (although not equal!) to a ranking
based on counting edge degrees.
The resource ranking shows that Web 2.0 web sites like Slashdot, Wikipedia,
Flickr, and a del.icio.us related blog appear in top positions. This is not sur-
prising, as early users of del.ico.us are likely to be interested in Web 2.0 in
general. This ranking correlates also strongly with a ranking based on edge
counts.
The results for the top users are of more interest as different kinds of users
appear. As all top users have more than 6000 bookmarks; “notmuch” has a
large amount of tags, while the tag count of “fritz” is considerably smaller.

Deliverable D5.1 Version 1.1 24

NEPOMUK 29.06.2007

Table 5: Folksonomy Adapted PageRank applied without preferences (called
baseline)

Tag ad. PageRank
system:unfiled 0,0078404
web 0,0044031
blog 0,0042003
design 0,0041828
software 0,0038904
music 0,0037273
programming 0,0037100
css 0,0030766
reference 0,0026019
linux 0,0024779
tools 0,0024147
news 0,0023611
art 0,0023358
blogs 0,0021035
politics 0,0019371
java 0,0018757
javascript 0,0017610
mac 0,0017252
games 0,0015801
photography 0,0015469
fun 0,0015296

User ad. PageRank
shankar 0,0007389
notmuch 0,0007379
fritz 0,0006796
ubi.quito.us 0,0006171
weev 0,0005044
kof2002 0,0004885
ukquake 0,0004844
gearhead 0,0004820
angusf 0,0004797
johncollins 0,0004668
mshook 0,0004556
frizzlebiscuit 0,0004543
rafaspol 0,0004535
xiombarg 0,0004520
tidesonar02 0,0004355
cyrusnews 0,0003829
bldurling 0,0003727
onpause_tv_anytime 0,0003600
cataracte 0,0003462
triple_entendre 0,0003419
kayodeok 0,0003407

URL ad. PageRank
http://slashdot.org/ 0,0002613
http://pchere.blogspot.com/2005/02/absolutely-delicious-complete-tool.html 0,0002320
http://script.aculo.us/ 0,0001770
http://www.adaptivepath.com/publications/essays/archives/000385.php 0,0001654
http://johnvey.com/features/deliciousdirector/ 0,0001593
http://en.wikipedia.org/wiki/Main_Page 0,0001407
http://www.flickr.com/ 0,0001376
http://www.goodfonts.org/ 0,0001349
http://www.43folders.com/ 0,0001160
http://www.csszengarden.com/ 0,0001149
http://wellstyled.com/tools/colorscheme2/index-en.html 0,0001108
http://pro.html.it/esempio/nifty/ 0,0001070
http://www.alistapart.com/ 0,0001059
http://postsecret.blogspot.com/ 0,0001058
http://www.beelerspace.com/index.php?p=890 0,0001035
http://www.techsupportalert.com/best_46_free_utilities.htm 0,0001034
http://www.alvit.de/web-dev/ 0,0001020
http://www.technorati.com/ 0,0001015
http://www.lifehacker.com/ 0,0001009
http://www.lucazappa.com/brilliantMaker/buttonImage.php 0,0000992
http://www.engadget.com/ 0,0000984

To see how good the topic-specific ranking by Adapted PageRank works, we
combined it with term frequency, a standard information retrieval weighting
scheme. To this end, we downloaded all 3 million web pages referred to by
a URL in our dataset. From these, we considered all plain text and html web
pages, which left 2.834.801 documents. We converted all web pages into
ASCII and computed an inverted index. To search for a term as in a search
engine, we retrieved all pages containing the search term and ranked them
by tf(t) · ~w[v] where tf(t) is the term frequency of search term t in page v, and
~w[v] is the Adapted PageRank weight of v.
Although this is a rather straightforward combination of two successful re-
trieval techniques, our experiments with different topic-specific queries indi-
cate that this adaptation of PageRank does not work very well. For instance,
for the search term “football”, the del.icio.us homepage showed up as the
first result. Indeed, most of the highly ranked pages have nothing to do with
football.
Other search terms provided similar results. Apparently, the overall structure
of the—undirected—graph overrules the influence of the preference vector. In

Deliverable D5.1 Version 1.1 25

http://slashdot.org/
http://pchere.blogspot.com/2005/02/absolutely-delicious-complete-tool.html
http://script.aculo.us/
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://johnvey.com/features/deliciousdirector/
http://en.wikipedia.org/wiki/Main_Page
http://www.flickr.com/
http://www.goodfonts.org/
http://www.43folders.com/
http://www.csszengarden.com/
http://wellstyled.com/tools/colorscheme2/index-en.html
http://pro.html.it/esempio/nifty/
http://www.alistapart.com/
http://postsecret.blogspot.com/
http://www.beelerspace.com/index.php?p=890
http://www.techsupportalert.com/best_46_free_utilities.htm
http://www.alvit.de/web-dev/
http://www.technorati.com/
http://www.lifehacker.com/
http://www.lucazappa.com/brilliantMaker/buttonImage.php
http://www.engadget.com/

NEPOMUK 29.06.2007

the next section, we discuss how to overcome this problem.

5.3 FolkRank—Community Detection in Folksonomies

In order to reasonably focus the ranking around the topics or users defined
in the preference vector, we have developed a differential approach, which
compares the resulting rankings with and without preference vector. This
resulted in our new FolkRank algorithm.

The FolkRank Algorithm
The FolkRank algorithm computes a topic-specific ranking in a folksonomy as
follows:

1. The preference vector ~p is used to determine the topic. It may have any
distribution of weights, as long as ||~w||1 = ||~p||1 holds. Typically a single
entry or a small set of entries is set to a high value, and the remaining
weight is equally distributed over the other entries. Since the structure
of folksonomies is symmetric, we can define a topic by assigning a high
value to either one or more tags and/or one or more users and/or one
or more resources.

2. Let ~w0 be the fixed point from Equation (1) with β = 1.

3. Let ~w1 be the fixed point from Equation (1) with β < 1.

4. ~w := ~w1 − ~w0 is the final weight vector.

Thus, we compute the winners and losers of the mutual reinforcement of
resources when a user preference is given, compared to the baseline without
a preference vector. We call the resulting weight ~w[x] of an element x of the
folksonomy the FolkRank of x.
Whereas the Adapted PageRank provides one global ranking, independent of
any preferences, FolkRank provides one topic-specific ranking for each given
preference vector. Note that a topic can be defined in the preference vector
not only by assigning higher weights to specific tags, but also to specific re-
sources and users. These three dimensions can even be combined in a mixed
vector. Similarly, the ranking is not restricted to resources, it may as well be
applied to tags and to users. We will show below that indeed the rankings on
all three dimensions provide interesting insights.

Comparing FolkRank
with Adapted PageRank To analyse the proposed FolkRank algorithm, we generated rankings for sev-

eral topics, and compared them with the ones obtained from Adapted PageR-
ank. We will here discuss one set of ranking results for the tag “boomerang”.
Our other experiments all provided similar results.
The leftmost part of Table 6 contains the ranked list of tags according to their
weights from the Adapted PageRank by using the parameters α = 0.2, β =
0.5, γ = 0.3, and 5 as a weight for the tag “boomerang” in the preference
vector ~p, while the other elements were given a weight of 0. As expected,
the tag “boomerang” holds the first position while tags like “shop” or “wood”
which are related are also under the Top 20. The tags “software”, “java”,
“programming” or “web”, however, are on positions 4 to 7, but have nothing
to do with “boomerang”. The only reason for their showing up is that they are
frequently used in del.icio.us (cf. Table 5). The second column from the left
in Table 6 contains the results of our FolkRank algorithm, again for the tag
“boomerang”. Intuitively, this ranking is better, as the globally frequent words
disappear and related words like “wood” and “construction” are ranked higher.

Deliverable D5.1 Version 1.1 26

NEPOMUK 29.06.2007

Table 6: Ranking results for the tag “boomerang” (two left at top: Adapted
PageRank and FolkRank for tags, middle: FolkRank for URLs) and for the
user “schm4704” (two right at top: Adapted PageRank and FolkRank for tags,
bottom: FolkRank for URLs)

Tag ad. PRank
boomerang 0,4036883
shop 0,0069058
lang:de 0,0050943
software 0,0016797
java 0,0016389
programming 0,0016296
web 0,0016043
reference 0,0014713
system:unfiled 0,0014199
wood 0,0012378
kassel 0,0011969
linux 0,0011442
construction 0,0011023
plans 0,0010226
network 0,0009460
rdf 0,0008506
css 0,0008266
design 0,0008248
delicious 0,0008097
injuries 0,0008087
pitching 0,0007999

Tag FolkRank
boomerang 0,4036867
shop 0,0066477
lang:de 0,0050860
wood 0,0012236
kassel 0,0011964
construction 0,0010828
plans 0,0010085
injuries 0,0008078
pitching 0,0007982
rdf 0,0006619
semantic 0,0006533
material 0,0006279
trifly 0,0005691
network 0,0005568
webring 0,0005552
sna 0,0005073
socialnetworkanalysis 0,0004822
cinema 0,0004726
erie 0,0004525
riparian 0,0004467
erosion 0,0004425

Tag ad. PRank
boomerang 0,0093549
lang:ade 0,0068111
shop 0,0052600
java 0,0052050
web 0,0049360
programming 0,0037894
software 0,0035000
network 0,0032882
kassel 0,0032228
reference 0,0030699
rdf 0,0030645
delicious 0,0030492
system:unfiled 0,0029393
linux 0,0029393
wood 0,0028589
database 0,0026931
semantic 0,0025460
css 0,0024577
social 0,0021969
webdesign 0,0020650
computing 0,0020143

Tag FolkRank
boomerang 0,0093533
lang:de 0,0068028
shop 0,0050019
java 0,0033293
kassel 0,0032223
network 0,0028990
rdf 0,0028758
wood 0,0028447
delicious 0,0026345
semantic 0,0024736
database 0,0023571
guitar 0,0018619
computing 0,0018404
cinema 0,0017537
lessons 0,0017273
social 0,0016950
documentation 0,0016182
scientific 0,0014686
filesystem 0,0014212
userspace 0,0013490
library 0,0012398

Url FolkRank
http://www.flight-toys.com/boomerangs.htm 0,0047322
http://www.flight-toys.com/ 0,0047322
http://www.bumerangclub.de/ 0,0045785
http://www.bumerangfibel.de/ 0,0045781
http://www.kutek.net/trifly_mods.php 0,0032643
http://www.rediboom.de/ 0,0032126
http://www.bws-buhmann.de/ 0,0032126
http://www.akspiele.de/ 0,0031813
http://www.medco-athletics.com/education/elbow_shoulder_injuries/ 0,0031606
http://www.sportsprolo.com/sports%20prolotherapy%20newsletter%20pitching%20injuries.htm 0,0031606
http://www.boomerangpassion.com/english.php 0,0031005
http://www.kuhara.de/bumerangschule/ 0,0030935
http://www.bumerangs.de/ 0,0030935
http://s.webring.com/hub?ring=boomerang 0,0030895
http://www.kutek.net/boomplans/plans.php 0,0030873
http://www.geocities.com/cmorris32839/jonas_article/ 0,0030871
http://www.theboomerangman.com/ 0,0030868
http://www.boomerangs.com/index.html 0,0030867
http://www.lmifox.com/us/boom/index-uk.htm 0,0030867
http://www.sports-boomerangs.com/ 0,0030867
http://www.rangsboomerangs.com/ 0,0030867

Url FolkRank
http://jena.sourceforge.net/ 0,0019369
http://www.openrdf.org/doc/users/ch06.html 0,0017312
http://dsd.lbl.gov/ hoschek/colt/api/overview-summary.html 0,0016777
http://librdf.org/ 0,0014402
http://www.hpl.hp.com/semweb/jena2.htm 0,0014326
http://jakarta.apache.org/commons/collections/ 0,0014203
http://www.aktors.org/technologies/ontocopi/ 0,0012839
http://eventseer.idi.ntnu.no/ 0,0012734
http://tangra.si.umich.edu/ radev/ 0,0012685
http://www.cs.umass.edu/ mccallum/ 0,0012091
http://www.w3.org/TR/rdf-sparql-query/ 0,0011945
http://ourworld.compuserve.com/homepages/graeme_birchall/HTM_COOK.HTM 0,0011930
http://www.emory.edu/EDUCATION/mfp/Kuhn.html 0,0011880
http://www.hpl.hp.com/semweb/rdql.htm 0,0011860
http://jena.sourceforge.net/javadoc/index.html 0,0011860
http://www.geocities.com/mailsoftware42/db/ 0,0011838
http://www.quirksmode.org/ 0,0011327
http://www.kde.cs.uni-kassel.de/lehre/ss2005/googlespam 0,0011110
http://www.powerpage.org/cgi-bin/WebObjects/powerpage.woa/wa/story?newsID=14732 0,0010402
http://www.vaughns-1-pagers.com/internet/google-ranking-factors.htm 0,0010329
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/ 0,0010326

Deliverable D5.1 Version 1.1 27

NEPOMUK 29.06.2007

A closer look reveals that this ranking still contains some unexpected tags;
“kassel” or “rdf” are for instance not obviously related to “boomerang”. An
analysis of the user ranking (not displayed) explains this fact. The top-ranked
user is “schm4704”, and he has indeed many bookmarks about boomerangs. A
FolkRank run with preference weight 5 for user “schm4704” shows his different
interests, see the rightmost column in Table 6. His main interest apparently is
in boomerangs, but other topics show up as well. In particular, he has a strong
relationship to the tags “kassel” and “rdf”. When a community in del.ico.us
is small (such as the boomerang community), already a single user can thus
provide a strong bridge to other communities, a phenomenon that is equally
observed in small social communities.
A comparison of the FolkRank ranking for user “schm4704” with the Adapted
PageRank result for him (2nd ranking from left) confirms the initial finding from
above, that the Adapted PageRank ranking contains many globally frequent
tags, while the FolkRank ranking provides more personal tags. While the
differential nature of the FolkRank algorithm usually pushes down the globally
frequent tags such as “web”, though, this happens in a differentiated manner:
FolkRank will keep them in the top positions, if they are indeed relevant to the
user under consideration. This can be seen for example for the tags “web”
and “java”. While the tag “web” appears in schm4704’s tag list—but not very
often, “java” is a very important tag for that user. This is reflected in the
FolkRank ranking: “java” remains in the Top 5, while “web” is pushed down in
the ranking.
The ranking of the resources for the tag “boomerang” given in the middle
of Table 6 also provides interesting insights. As shown in the table, many
boomerang related web pages show up (their topical relatedness was con-
firmed by a boomerang aficionado). Comparing the Top 20 web pages of
“boomerang” with the Top 20 pages given by the “schm4704” ranking, there
is no “boomerang” web page in the latter. This can be explained by analysing
the tag distribution of this user. While “boomerang” is the most frequent tag
for this user, in del.icio.us, “boomerang” appears rather infrequently. The first
boomerang web page in the “schm4704” ranking is the 21st URL (i. e., just
outside the listed TOP 20). Thus, while the tag “boomerang” itself dominates
the tags of this user, in the whole, the semantic web related tags and re-
sources prevail. This demonstrates that while the user “schm4704” and the
tag “boomerang” are strongly correlated, we can still get an overview of the
respective related items which shows several topics of interest for the user.
This example—as well as the other experiments we performed—shows that
FolkRank provides good results when querying the folksonomy for topically
related elements. Overall, our experiments indicate that topically related items
can be retrieved with FolkRank for any given set of highlighted tags, users
and/or resources.
Our results also show that the current size of folksonomies is still prone to
being skewed by a relatively small number of perturbations—a single user, at
the moment, can influence the emergent understanding of a certain topic in
the case that a sufficient number of different points of view for such a topic has
not been collected yet. With the growth of folksonomy-based data collections
on the web and in social communities such as NEPOMUK, the influence of
single users will fade in favor of a common understanding provided by huge
numbers of users.
As detailed above, our ranking is based on tags only, without regarding any
inherent features of the resources at hand. This allows to apply FolkRank to
search for pictures and other multimedia content, as well as for all other items
that are difficult to search in a content-based fashion. The same holds for
intranet applications, where in spite of centralized knowledge management ef-

Deliverable D5.1 Version 1.1 28

NEPOMUK 29.06.2007

forts, documents often remain unused because they are not hyperlinked and
difficult to find. Full text retrieval may be used to find documents, but tradi-
tional IR methods for ranking without hyperlink information have difficulties
finding the most relevant documents from large corpora.

Applying FolkRank for
Community Detection The original PageRank paper [11] already pointed out the possibility of us-

ing the random surfer vector ~p as a personalization mechanism for PageRank
computations. The results of Section 5.3 show that, given a user, one can
find a set of tags, resources and particulary users of interest to him. Likewise,
FolkRank yields a set of related users and resources for a given tag. Follow-
ing these observations, FolkRank can be used to detect communities of users
which share a common interest or have interests that are related to those of
a given user. These commmunities can be utilized at different points in the
folksonomy system:

• Documents from related users that are of potential interest to a user can
be suggested to him. This kind of recommendation pushes potentially
useful content to the user and increases the chance that a user finds
useful resources that he did not even know existed by “serendipitous”
browsing.

• When using a certain tag, other related tags can be suggested. This
can be used, for instance, to speed up the consolidation of different
terminologies and thus facilitate the emergence of a common vocabulary
among the community.

• The precision of document search can be improved by restricting the
search space to documents of the relevant community.

• Other users that work on related topics can be made explicit, improv-
ing thus the knowledge transfer within organizations and fostering the
formation of communities.

As already mentioned, FolkRank computes the winners and losers of the mu-
tual reinforcement of users when a user or tag preference is given, compared
to the baseline without a preference vector. To this end we regard the winners
as belonging to the community surrounding the user or tag and the loosers as
not belonging to it. With proper normalization the FolkRank vector ~w sums up
to 0 and thus, users with a weight ~w[x] > 0 are regarded as winners and sim-
iliarly, users with a weight ~w[x] ≤ 0 as loosers. Consequently, the set of users
returned by the Community Manager contains all users with positive weight in
the FolkRank weight vector.

5.4 Conceptual Clustering of Folksonomies

This section focuses on an approach to conceptually cluster folksonomies and
thus find groups of users with common conceptualization. As the three di-
mensions of a folksonomy do not carry any structure, there is no systematic
way of browsing the data, e. g., in a top-down manner. Hence, support is
needed for discovering the most significant concepts (and thus communities)
of the folksonomy. For two-dimensional binary data, a solution to this task are
iceberg concept lattices [65]. In this section, we will extend this conceptual
hierarchical clustering technique to the three-dimensional nature of folksono-
mies.
Our algorithm solves the problem of frequent closed itemset mining for this
kind of data. It will return a tri-ordered set of (frequent) triples, where each

Deliverable D5.1 Version 1.1 29

NEPOMUK 29.06.2007

triple (A,B,C) consists of a set A of users, a set B of tags, and a set C of
resources. These triples—called (frequent) tri-concepts in the sequel—have
the property that each user in A has tagged each resource in C with all tags
from B, and that none of these sets can be extended without shrinking one
of the other two dimensions. They are thus the three-dimensional version of
closed itemsets.
We can additionally impose minimum support constraints on each of the three
dimensions ‘users’, ‘tags’, and ‘resources’. In the dyadic case, they equal the
minimum support and minimal length thresholds from association rule mining.
By setting higher values, we can focus on the largest conceptual components
of the folksonomy before having a more detailed look with lower thresholds.

Formal Concept Analysis
FCA formalizes the notion of a ‘concept’ as established in the international
standard ISO 704: a concept is considered as a unit of thought constituted
of two parts: its extension and its intension [70, 26]. This understanding of
‘concept’ is first mentioned explicitly in the Logic of Port Royal [4]. To allow
a formal description of extensions and intensions, FCA starts with a (formal)
context K := (G, M, I) which consists of a set G of objects, a set M of
attributes, and a binary relation I ⊆ G ×M . (g,m) ∈ I is read as “object g
has attribute m”. This data structure equals the set of transactions used for
association rule mining, if we consider M as the set of items and G as the set
of transactions.
We define (following [70]), for A ⊆ G, A′ := {m ∈M | ∀g ∈ A : (g,m) ∈ I} ;
and dually, for B ⊆M , B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I} .

Now, a formal concept is a pair (A,B) with A ⊆ G, B ⊆ M , A′ = B and
B′ = A. A is called extent and B is called intent of the concept.
This definition is equivalent to saying that A× B ⊆ I such that neither A nor
B be can be enlarged without violating this condition.
The set B(K) of all concepts of a formal context K together with the partial
order (A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2 (which is equivalent to B1 ⊇ B2) is a
complete lattice, called the concept lattice of K [70].
The concept lattice is a hierarchical conceptual clustering of the data which
can be visualised by a Hasse diagram. This visualisation technique has been
used in many applications for qualitative data analysis [25].

Closed Itemset Mining
In terms of Formal Concept Analysis, the task of mining frequent itemsets [1]
is described as follows: Given a formal context K = (G, M, I) and a threshold
minsupp ∈ [0, 1], determine all subsets B of M where the support supp(B) :=
card(B′)
card(G) (with B′ as defined above) is larger than the threshold minsupp. Here,
M is the set of items while G is the set of transactions.
The set of these frequent itemsets itself is usually not considered as a fi-
nal result of the mining process, but rather an intermediate step. Its most
prominent use is certainly association rules [1]. The task of mining asso-
ciation rules is to determine all pairs X → Y of subsets of M such that
the support supp(X → Y) := supp(X ∪ Y) is above the threshold minsupp,
and the confidence conf(X → Y) := supp(X∪Y)

supp(X) is above a given threshold
minconf ∈ [0, 1]. Association rules are for instance used in warehouse basket
analysis, where the warehouse management is interested in learning about
products frequently bought together .
Since determining the frequent itemsets is the computationally most expensive
part, most research has focused on this aspect. Most algorithms follow the
way of the well-known Apriori algorithm [2], which is traversing iteratively the
set of all itemsets in a levelwise manner. Algorithms based on this approach

Deliverable D5.1 Version 1.1 30

NEPOMUK 29.06.2007

have to extract the supports of all frequent itemsets from the database. How-
ever, this is by no means necessary.
It turned out [51, 74, 63] that it is sufficient to consider the intents of those
concepts where the cardinality of their extent is above the minimum support
threshold. These frequent concept intents are called closed itemsets in associ-
ation rule mining, as the set of all concept intents is a closure system (i. e., it is
closed under set intersection). The corresponding closure operator is the con-
secutive application of the two ·′ operators defined in the previous subsection.
That is, for an itemset B, the set B′′ is the smallest concept intent containing
B. This closure operator will be used in the Trias algorithm in Section 5.5.
In FCA, the equivalent notion is that of an iceberg concept lattice [65], which
is the

∨
–semi-lattice {(A,B) ∈ B(K) | card(A)

card(G) ≥ minsupp} with the order
defined in Section 5.4. The iceberg concept lattice visualises the most frequent
concepts of a dataset [65], and allows for an efficient visualisation of a basis
(condensed set) of association rules [66, 53]. These bases allow to reduce
the number of rules significantly without losing any information.

Triadic Concept Analysis
Inspired by the pragmatic philosophy of Charles S. Peirce with its three univer-
sal categories [55], Rudolf Wille and Fritz Lehmann extended Formal Concept
Analysis in 1995 with a third category [37]. They defined a triadic formal con-
text as a quadruple K := (G, M, B, Y) where G, M , and B are sets, and Y
is a ternary relation between G, M , and B, i. e., Y ⊆ G×M × B. This is ex-
actly the structure of a folksonomy (as defined above) without the ≺ relation.
The elements of G, M , and B are called objects, attributes, and conditions,
respectively, and (g,m, b) ∈ Y is read “object g has attribute m under condi-
tion b”. A triadic concept of K is a triple (A1, A2, A3) with A1 ⊆ G, A2 ⊆ M ,
A3 ⊆ B, and A1 × A2 × A3 ⊆ Y such that none of its three components can
be enlarged without violating this condition. This is the natural extension of
the definition of a formal concept22 to the triadic case.
With the three dimensions one obtains three quasi-orders .1, .2, and .3

on the set of all tri-concepts: (A1, A2, A3) .i (B1, B2, B3) iff Ai ⊆ Bi, for
i = 1, 2, 3. For two tri-concepts a and b, a .i b and a .j b imply b .k a,
for {i, j, k} = {1, 2, 3}. These three quasi-orders are the triadic version of the
lattice of closed itemsets in standard frequent itemset mining. In the triadic
case, the relationship between the three quasi-orders is unfortunately weaker,
which makes the mining more complex.
Lehmann and Wille present in [37] an extension of the theory of ordered sets
and (concept) lattices to the triadic case, and discuss structural properties.
This approach initiated research on the theory of concept trilattices.23 With
the rise of social resource sharing systems on the web, triadic data became
recently interesting for many researchers. In particular, one needs knowledge
discovery and information retrieval methods that are able to handle very large
datasets. In [59], we discussed how to compute association rules from a tri-
adic context based on projections. A first step towards truly ‘triadic association
rules’ has been done in [24].

The Problem of Mining all
Frequent Tri-Concepts We will now formalize the problem of mining all frequent tri-concepts. We

start with an adaptation of the notion of ‘frequent itemsets’ to the triadic case.

Definition 1 Let F := (U, T,R, Y) be a folksonomy/triadic context. A tri-set
of F is a triple (A,B,C) with A ⊆ U , B ⊆ T , C ⊆ R such that A×B×C ⊆ Y .

As folksonomies have three dimensions which are completely symmetric, one
22 In terms of association rules: a closed itemset together with all its related transactions, see [70,
26] for details. 23 See http://www.bibsonomy.org/tag/triadic+fca

Deliverable D5.1 Version 1.1 31

http://www.bibsonomy.org/tag/triadic+fca

NEPOMUK 29.06.2007

can establish minimum support thresholds on all of them. The general problem
of mining frequent tri-sets is then the following:

Problem 1 (Mining all frequent tri-sets) Let F := (U, T,R, Y) be a folkso-
nomy/triadic context, and let u-minsup, t-minsup, r-minsup ∈ [0, 1]. The task
of mining all frequent tri-sets consists in determining all tri-sets (A,B, C) of F
with |A|

|U | ≥ u-minsup, |B||T | ≥ t-minsup, and |C|
|R| ≥ r-minsup.

This is actually a harder problem than the direct adaptation of frequency to
one more dimension: In classical frequent itemset mining, one has a con-
straint – the frequency – only on one dimension (the number of transactions).
Thus the equivalent triadic version of the problem would need two minimum
support thresholds only (say u-minsupp and t-minsupp). However, this seems
not natural as it breaks the symmetry of the problem. Hence we decided to go
for the harder problem directly (which equals in the dyadic case the addition
of a minimal length constraint on the itemsets). The lighter version with only
two constraints is then just a special case (e. g., by letting r-minsupp:= 0).
As in the classical case, our thresholds are antimonotonic constraints: If the
tri-set (A1, B1, C1) with A1 being maximal for A1 × B1 × C1 ⊆ Y is not u-fre-
quent then all (A2, B2, C2) with B1 ⊆ B2 and C1 ⊆ C2 are not u-frequent
either. The same holds symmetrically for the other two directions.
With the step from two to three dimensions, however, the direct symmetry
between monotonicity and antimonotonicity (which results in the dyadic case
from the dual order isomorphism between the set of concept extents and the
set of concept intents) breaks. All we have in the triadic case is the following
lemma which results (via the three quasi-orders defined in Section 5.4) from
the triadic Galois connection [8] induced by a triadic context.

Lemma 1 (cf. [37]) Let (A1, B1, C1) and (A2, B2, C2) be tri-sets with Ai be-
ing maximal for Ai×Bi×Ci ⊆ Y , for i = 1, 2.24 If B1 ⊆ B2 and C1 ⊆ C2 then
A2 ⊆ A1. The same holds symmetrically for the other two directions.

As the set of all frequent tri-sets is highly redundant, we will in particular
consider a specific condensed representation, i. e., a subset which contains
the same information, namely the set of all frequent tri-concepts.

Problem 2 (Mining all frequent tri-concepts) Let F := (U, T,R, Y) be a
folksonomy/triadic context, and let u-minsup, t-minsup, r-minsup ∈ [0, 1]. The
task of mining all frequent tri-concepts consists in determining all tri-concepts
(A,B, C) of F with |A|

|U | ≥ u-minsup, |B||T | ≥ t-minsup, and |C|
|R| ≥ r-minsup.

Sometimes it is more convenient to use absolute rather than relative thresh-
olds. For this case we let τu := |U | · u-minsupp, τt := |T | · t-minsupp, and
τr := |R| · r-minsupp.
Once Problem 2 is solved, we obtain the answer to Problem 1 in a straight-
forward enumeration as {(A,B,C) | ∃ frequent tri-concept (Â, B̂, Ĉ) : A ⊆
Â, B ⊆ B̂, C ⊆ Ĉ, |A| ≥ τu, |B| ≥ τt, |C| ≥ τr}.

5.5 The Trias Algorithm for Mining all Frequent Tri-Concepts

Our algorithm for mining all frequent tri-concepts of a folksonomy F := (U, T,R, Y)
is listed as Algorithm 1. A prior version was used for analysing psychological
24 This holds in particular if the tri-sets are tri-concepts.

Deliverable D5.1 Version 1.1 32

NEPOMUK 29.06.2007

1 TRIAS(U, T, R, Y, τu, τt, τr)

2 Ỹ := {(u, (t, r)) | (u, t, r) ∈ Y }
3 (A, I) := FirstFrequentConcept((U, T ×R, Ỹ), τu)

4 repeat
5 if |I| ≥ τt · τr then begin
6 (B, C) := FirstFrequentConcept((T, R, I), τt)

7 repeat
8 if |C| ≥ τr then
9 if A = (B × C)Ỹ then output(A, B, C)

10 until not NextFrequentConcept((B, C), (T, R, I), τt)

11 endif
12 until not NextFrequentConcept((A, I), (U, T ×R, Ỹ), τu)

Algorithm 1: The TRIAS algorithm

1 FirstFrequentConcept(K, τ)

2 A := ∅′

3 B := A′

4 if |A| < τ then
5 NextFrequentConcept((A, B), K, τ)

6 endif
7 return (A, B)

Algorithm 2: The FirstFrequentConcept function

studies [34]. That application varied from Trias as it aimed at an iterative prun-
ing of the data set. Furthermore, it did not take into account any frequency
constraints.
We let Ỹ := {(u, (t, r)) | (u, t, r) ∈ Y }, and we identify U , T , and R with
natural numbers, i. e. U = {1, . . . , |U |} (and symmetrically for T , R). In both
its outer and its inner loop, Trias calls the pairs of subroutines FirstFrequent-
Concept((G, M, I), τ) and NextFrequentConcept((A,B), (G, M, I), τ). These
two routines provide an enumeration of all frequent dyadic concepts (A,B)
of the formal (dyadic) context (G, M, I). The context is passed over as in-
put parameter. FirstFrequentConcept returns in (A,B) the first concept of
the enumeration. NextFrequentConcept takes the current concept (A,B) and
modifies it to the next concept of the enumeration. This way, we compute all
frequent maximal cuboids in the relation Y by consecutively computing max-
imal rectangles in the binary relations Ỹ and I, resp, whereas the condition
in line 9 of Algorithm 1 checks if the rectangle layers form a maximal cuboid.
Note that A ⊆ (B × C)Ỹ trivially holds, because of A = I Ỹ and (B × C) ⊆ I.
Hence only “⊇” has to be checked.
For computing all (frequent) maximal rectangles in a binary relation, one can
resort to any algorithm for computing (iceberg) concept lattices. The enumer-
ation can be done in any convenient way. For the inner and the outer loop,
one could use different algorithms for that task.
In our implementation we equipped the NextClosure algorithm [23, 26] with
frequency pruning for implementing the FirstFrequentConcept and NextFre-
quentConcept routines (see Algorithms 2 and 3, resp.) for both the outer and
the inner loop. This algorithm has the advantage that it needs almost only the
space for the data in main memory.
NextClosure computes concepts in lectic order. This means that, for a given
concept (A,B), NextClosure computes the concept (C,D) whose intent D is
the next set after B in the so-called lectic order. The lectic order on sets
is a total order and is equivalent to the lexicographic order of bit vectors
representing those sets.

Deliverable D5.1 Version 1.1 33

NEPOMUK 29.06.2007

1 NextFreqentConcept((A, B), (G, M, I), τ)

2 while defined(i) begin
3 A := (B ⊕ i)′

4 if |A| ≥ τ then
5 D := A′

6 if B <i D then
7 B := D

8 return true
9 endif
10 endif
11 i := max(M \B ∩ {1, . . . , i− 1}
12 end
13 return false

Algorithm 3: The NextFreqentConcept function

Figure 9: Accessing triples in sorted order

To find the next concept we define for B ⊆ M and i ∈ M : B ⊕ i := (B ∩
{1, . . . , i− 1}) ∪ {i}.
By applying the closure operator X 7→ X ′′ to B⊕ i the algorithm computes for
a given B the set D := (B ⊕ i)′′. This is the lectically next intent, if B <i D
holds, where B <i D means, that i is the smallest element in which B and D
differ, and i ∈ D.
The method NextFrequentConcept adopts this idea and additionally checks
if the computed extent A := (B ⊕ i)′ fullfills the minimal support criterion
before computing the intent D := A′. This is done in line 5 of Algorithm 3 by
considering the extent A only if it is large enough.
Taking a closer look on the function ·′ revealed that it demands the computa-
tion of several set intersections at a time. Since profiling showed that this is
the main bottleneck of the algorithm we optimized this by first ordering the
sets to be intersected by size (with the smallest set first). Then the algorithm
recursively intersects them with a procedure used for merge sort. This is pos-
sible since every itemset of the binary context can be accessed as an ordered
list due to the method described as follows.
Because two sortings of Y are needed, instead of storing both, we just store
the permutations for every order and an additional offset table which allows
constant time access to every triple. The chosen approach is exemplified in
Figure 9. The table on the left contains the unsorted triples Y of which only
the values from U are shown here. The table in the middle describes the
permutation which allows to access the triples in lexicographic order. Finally,
the third table contains for every element u ∈ U an offset which points to the
position in the second table, which points to the first triple of that user in the

Deliverable D5.1 Version 1.1 34

NEPOMUK 29.06.2007

A fischer gnat
B css design web
C http://www.quirksmode.org/

http://webhost.bridgew.edu/etribou/layouts/

http://www.picment.com/articles/css/funwithforms/

http://www.alistapart.com/articles/sprites/

A bibi poppy
B women cinema film
C http://www.reelwomen.org/

http://www.people.virginia.edu/~pm9k/libsci/womFilm.html

http://www.lib.berkeley.edu/MRC/womenbib.html

http://www.beaconcinema.com/womfest/

http://www.widc.org/

http://www.wftv.org.uk/home.asp

http://www.feminist.com/resources/artspeech/media/femfilm.htm

http://www.duke.edu/web/film/pioneers/

http://www.womenfilmnet.org/index.htm#top

http://208.55.250.228/

Table 7: Examples of frequent tri-concepts of del.icio.us

Y list.
Together all this allows constant time access to the sorted tag-resource set
of every user. Consequently, this method is applied also for accessing the
columns of the respective context.

Evaluation
In order to evaluate our approach, we have analyzed the popular social book-
marking system del.icio.us. For detecting communities of users which have
the same tagging behaviour, we ran the Trias algorithm on a snapshot con-
sisting of all users, resources, tags and tag assignments we could download
(cf. Section 5.2) that were entered to the system on or before June 15, 2004.
The resulting folksonomy consists of |U | = 3, 301 users, |T | = 30, 416 differ-
ent tags, |R| = 22, 036 resources (URLs), which are linked by |Y | = 616, 819
triples.
As a first step, we ran Trias on the dataset without restricting the minimum
supports (i. e., τu := τt := τr := 0). The resulting concept tri-lattice consists of
246, 167 tri-concepts.
We then investigated the concepts which contain more than one user, tag and
resource, i. e., with τu := τt := τr := 2. There were 1, 062 such tri-concepts.
Table 7 shows two examples. They may be exploited further for extracting
relations between tags or for recommending a user to get in touch with the
other one, as they both use the same terminology for the same URLs and are
thus likely to be on a similar line of thought.
As in the dyadic case, the size of the result may grow exponentially in the
worst case. Biedermann has shown in [9] that the concept tri-lattice of the
triadic context of size n × n × n where only the main diagonal is empty has
size 3n. In typical applications, however, one is far from this theoretical bound-
ary. Therefore we focus on empirical evaluations on a large scale real-world
dataset.
For measuring the runtime and the number of frequent concepts we have
evaluated the performance of Trias on the del.icio.us dataset described be-
fore. From the base set we created monthly snapshots as follows. F0 contains
all tag assignments performed on or before Dec 15, 2003, together with the
involved users, tags, and resources; F1 all tag assignments performed on or
before Jan 15, 2004, together with the involved users, tags, and resources;
and so on until F6 which contains all tag assignments performed on or before
June 15, 2004, together with the involved tags, users, and resources. This

Deliverable D5.1 Version 1.1 35

http://www.quirksmode.org/
http://webhost.bridgew.edu/etribou/layouts/
http://www.picment.com/articles/css/funwithforms/
http://www.alistapart.com/articles/sprites/
http://www.reelwomen.org/
http://www.people.virginia.edu/~pm9k/libsci/womFilm.html
http://www.lib.berkeley.edu/MRC/womenbib.html
http://www.beaconcinema.com/womfest/
http://www.widc.org/
http://www.wftv.org.uk/home.asp
http://www.feminist.com/resources/artspeech/media/femfilm.htm
http://www.duke.edu/web/film/pioneers/
http://www.womenfilmnet.org/index.htm#top
http://208.55.250.228/

NEPOMUK 29.06.2007

represents seven monotonously growing contexts describing the folksonomy
at different points in time. For mining frequent tri-sets and frequent tri-con-
cepts we used minimum support values of τu := τt := τr := 2 and measured
the run-time of the implementations on a dual-core Opteron system with 2
GHz and 8 GB RAM.

10

100

1000

10000

100000

1000000

10000000

100000 200000 300000 400000 500000 600000

N
o.

of
se

ts

|Y |

DecJan Feb Mar Apr May Jun

Frequent Tri-Concepts

3
3

3
3

3
3

3

3
Frequent Tri-Sets

+
+

+ +
+

+

+
+

Figure 10: Number of frequent tri-sets vs. number of frequent tri-concepts

Figure 10 shows the number of frequent tri-concepts versus the number of fre-
quent tri-sets on the logarithmically scaled y-axis, whereas the x-axis depicts
the number of triples in Y—which grows from 98,870 triples in Dec 2003 to
616,819 in June 2004. What can be seen is the massive increase of frequent
tri-sets in June 2004 while the number of frequent tri-concepts grows at a
different level. This can be explained when looking further on the size of the
tri-concepts found which also grows from month to month, since more and
more users appear and start agreeing on a common vocabulary. Especially
such large concepts as shown in Table 7 do not appear until June 2004 but
they are responsible for the steep increase of frequent tri-sets. Overall one
can observe that the number of frequent tri-sets of every snapshot is always
at least one magnitude of size larger than the number of frequent tri-concepts.
Consequently, computing frequent tri-sets is much more demanding than com-
puting frequent tri-concepts—without providing any additional information.

1

10

100

1000

10000

100000

100000 200000 300000 400000 500000 600000

tim
e

in
se

co
nd

s

|Y |

DecJan Feb Mar Apr May Jun

triadic NEXT CLOSURE

3

3

3

3

3

3

3

3
TRIAS

+
+

+
+

+
+

+

+

Figure 11: Runtime of triadic NEXT CLOSURE and TRIAS algorithm on
del.icio.us datasets

Deliverable D5.1 Version 1.1 36

NEPOMUK 29.06.2007

A comparison of the speed improvement gained from not computing all tri-con-
cepts with an algorithm like Next Closure and afterwards pruning the non-fre-
quent concepts but using the Trias algorithm for directly mining frequent tri-
concepts is shown in Figure 11. The logarithmically scaled y-axis depicts the
runtime of the algorithms in seconds while the x-axis shows again the size of
the Y relation. One can see that computing all tri-concepts is more than one
magnitude more expensive than mining only the frequent tri-concepts one is
interested in.
With the results seen we can conclude that the Trias algorithm provides an
efficient method to mine frequent tri-concepts in large scale conceptual struc-
tures. Those tri-concepts can be regarded as communities consisting of users
which tagged the same resources with the same tags. Hence, one can use
those tri-concepts to support users in finding other users with similiar concep-
tualizations by suggesting them users of concepts they appear in. This could
be refined when a user is looking for other users related to a certain topic,
e.g., “football”. Then one could extract the users which appear together with
the user and the tag “football” in a tri-concept.
Insofar, the method proposed here provides some flexibility for the community
detection task of D5.1. As presented in this section, we analyzed both Trias
and FolkRank and chose to implement the FolkRank in the Community Man-
ager component. FolkRank has some advantages compared to Trias in terms
of speed and also allows more control on the sizes of detected communities.
Hence, it is the favourite of the analyzed algorithms.

Deliverable D5.1 Version 1.1 37

NEPOMUK 29.06.2007

6 Metadata Alignment

Overview
The main task in metadata alignment is to identify relationships between ele-
ments of the input ontologies, most basically between the ontologies’ classes.
These relationships are necessary to determine which actions to perform in
order to create a merged ontology (see Figure 12). Within the scope of NEPO-
MUK, we will not formally infer class relationships, but gather evidence for
such relationships. This is due to the fact that the PIMO ontologies we want
to align are ontologies created by end users, therefore mostly having a kind
of ad-hoc character instead of being completely formally sound.
In the literature, metadata alignment operations are mainly based on two
sources of evidence:

Term–based evidence considers similarities in the the textual description
(i.e., the “name”) of concepts in the source ontologies. Examples are
the Chimaera ontology environment [45, 44] and Protégé’s PROMPT tab
[50].

Topology–based evidence considers the structure of the source ontologies,
e.g., by determining similarities of the graphs representing concepts and
their relationships, as done by the Similarity Flooding algorithm [46].

Figure 12: Merging Ontologies

The advantage of term–based evidence is that a variety of well–understood
algorithms for the determination of string similarities makes this approach
easy to implement. However, all precision and recall problems known from
string–based information retrieval (e.g., due to synonyms or homonyms) di-
rectly apply here. Therefore, thesauri or lexica are sometimes incorporated as
additional background knowledge to alleviate these problems.
Most methods that focus on topology–based evidence are, strictly speaking,
hybrid: Approaches using formal logic apply matching and unification proce-
dures that rely on some common vocabulary (i.e., they rely basically on term
identity); the similarity flooding algorithm presented in [46] is hybrid as it de-
rives its initial activation values from term similarities. For an overview of some
merging tools and algorithms along with the kind of information they exploit,
see Table 8. The Metadata Alignment component is designed to allow custom
tailored combinations of alignment algorithms to produce the best matching
procedure of ontology alignment for each application scenario. Thus, its core
consists of a set of interfaces, providing a framework to integrate various types
of modules to a single procedure.
Each module belongs to one of the following levels:

Ontology level Since all kinds of ontologies and alike should serve as ”alignees”,
the Metadata Alignment component defines an ontology interface. On-

Deliverable D5.1 Version 1.1 38

NEPOMUK 29.06.2007

Table 8: Comparison of ontology merging approaches

References Term Topology Instance
COMA [19] x x
Chimaera[44] x
CAIMAN[35] x x
Similarity Flooding[46] x x
PROMPT[50] x

tology Adapter implement this interface in order to make a certain kind
of ontological data accessible for the system.

Similarity level The basis of most alignment approaches is some sort of sim-
ilarity between the entities of the ontologies to be aligned. Thus, we
have created an interface to such ”Similarity Measures”, to make them
exchangable.

Procedure/alignment level The highest level is a complete alignment proce-
dure that is able to calculate an alignment for a given pair of ontologies
using the similarity values generated on similarity level. This is certainly
the single most important level from a user’s point of view.

Modules
In the following, an overview of the modules present in the Metadata Align-
ment component is given. For each module type a specialized API is avail-
able25. New modules can be created by implementing this API. Custom pa-
rameters can be passed to the modules upon initialization. More in-depth
technical documentation is available as JavaDoc as well as on the Phase com-
ponent’s wiki pages26. As is the case with most NEPOMUK components, the
Phase component is Open Source.

6.1 Ontology Adapters

Ontology adapters provide are a unified interface for several kinds of input
ontologies. Note that even with ontologies using the same representation
language, the granularity level on which to perform the actual matching can
be chosen. For example, NEPOMUK ontologies are expressed in NRL which
is in turn RDFS-based. However, since most user concepts are expressed as
PIMO instances (within NRL), it may be desirable not to perform alignment on
the (rather basic) RDFS class level but on PIMO level. Currently, we use the
RDFS-based adapter, but in future ontologies optimized for NEPOMUK domain
will be taken into account.

RDFS Ontologies This adapter allows accessing RDFS based ontologies, in-
cluding ontologies currently present in NEPOMUK.

OWL Ontologies This adapter enables the metadata alignment component
to access OWL ontologies, represented as RDF files.

Protégé Ontologies Provides an interface to all Protégé projects.

Document Classification Stores DCSs are integrated document management
and classification systems. Their document topic taxonomy is treated as
a simple kind of ontology.

25 See org.semanticdesktop.nepomuk.comp.phasealignment.model.* packages
26 http://dev.nepomuk.semanticdesktop.org/wiki/PhaseAlignment

Deliverable D5.1 Version 1.1 39

NEPOMUK 29.06.2007

Composite ontology This is a meta adapter allowing to create modified views
on other ontologies by expanding or contracting subgraphs. This is
handy for similarity algorithms that have problems with very large on-
tologies.

6.2 Similarity Measures

In the following subsections we first describe the different similarity measures
which are implemented to be used as evidence for the ontology alignment
algorithm and then we describe each implemented method in detail. These
measures can be divided into three main categories.

Element-based methods are used to measure the correspondence of two
elements of two ontologies at a local level, i.e., only comparing one
element with another one and not considering the topology and structure
of the ontologies.

Structure-based In structure-based matching, the topologies of the respec-
tive ontologies are used to compute similarity information. The more so-
phisticated the structure of the ontologies is, the more information can
be gathered using this technique: Flat ontologies do not contain enough
structural "fingerprints” to be suitable for structure-based matching.

Instance-based Determines the similarity between concepts by calculation
the similarity between sets of example objects. Currently we do not
utilize this kind of similarity to induce mappings.

6.2.1 String Based Similarity

This similarity measure is element-based and determines the similarity of two
ontology entities by calculating a simple string alikeness on the labels of these
entities. In our implementation, we incorporated similarity based on n-grams,
which is fast and language independent. n-gram distance is defined as fol-
lows: Let ngram(s, n) be the set of all substrings of s (augmented with n− 1
irrelevant characters at the beginning and the end) of length n, the n-gram
distance is a dissimilarity measure between two strings s and t:
δ(s, t) = |ngram(s, n) ∩ ngram(t, n)|
The normalized version of this function is:
δ(s, t) = |ngram(s,n)∩ngram(t,n)|

n×min(|s|,|t|)

This function is quite efficient when some characters are only missing, and not
replaced by other characters.

6.2.2 Acronym Matcher

This similarity measure is also element-based and determines the similiarity of
two ontology entities by analyzing the entities’ labels for one being an acronym
of the other. In practice, this is implemented using an algorithm that compares
both labels using a variant of a longest common subsequences algorithm,
assigning penalty points for certain characteristics that make similarity less
likely. For example, “Resource Description Framework” is a perfect match for
“RDF” whereas any additional letters in the acronym or any additional words

Deliverable D5.1 Version 1.1 40

NEPOMUK 29.06.2007

in the name would diminish similarity. Several rules are implemented and have
been tested in example scenarios.

6.2.3 Similarity Flooding

Similarity Flooding [46] is a structure-based algorithm that is already used in
the area of databases for schema mapping. It is a generic approach for deter-
mining matching nodes in graphs, taking two graphs as input and returning
a set of match pairs with corresponding similarity values. It uses a propaga-
tion mechanism to promote a given or confirmed similarity to the neighboring
nodes. Similarity Flooding roughly consists of the following steps:

1. Create graph representations for the ontologies.

2. Set up an initial map (set up the initial similarity value of match pairs).

3. Perform the core Similarity Flooding algorithm.

• Create pairwise connectivity graph.
• Create induced propagation graph.
• Compute similarity values.

As Similarity Flooding works on graphs, we first need to create graphs (mod-
els) representing the structure of the ontologies we want to align. Then, we
need to set up initial similarity values for each pair of graph nodes where a pair
are two nodes, one from the model representing ontology A, and one from the
model representing ontology B. The Similarity Flooding algorithm then creates
a pairwise connectivity graph. Each node of the pairwise connectivity graph
represents a potential match pair of both of the models’ nodes, therefore the
pairwise connectivity graph combines the two models and gives a notion on
how similarity propagates. The induced propagation graph is a refined version
of the pairwise connectivity graph, consisting of the same nodes, but featuring
additional edges. A weight value is assigned to each edge. This value denotes
how well similarity propagates. When computing similarity values, we perform
a fixpoint calculation, starting by assigning the initial map’s similarity values to
the nodes of the induced propagation graph, and then propagating similarity
along the graph’s edges until the similarity values do not change more than
an arbitrarily-chosen value between iterations. We will now discuss the steps
of Similarity Flooding in more detail.

Creating graph representations This can be done for an ontology in sev-
eral ways. Due to the way Similarity Flooding constructs its propagation graph,
it is beneficial to use a graph representation that uses a large amount of dis-
tinctively labeled edges. The edges’ labels must stay generic, i.e. unrelated to
the frame names used in the ontology.
In figure 13, two models representing the same ontology are shown. Model
A uses differently named edges representing the type of the respective node.
Model B uses a separate type edge annotating nodes with their respective
type. Therefore Model B needs two nodes (for the nodes representing class
and templateslot types) and five edges (for associating nodes with type nodes)
in excess of Model A.
While this difference is not very big, the complexity difference of the pairwise
connectivity graphs is big. Here, the pairwise connectivity graph is created
from Model A and Model A’ (representing the same model but using corre-
sponding German identifiers as node names), shown in figure 14 . The same

Deliverable D5.1 Version 1.1 41

NEPOMUK 29.06.2007

Figure 13: One Ontology, Two Representation Styles

Figure 14: Pairwise Connectivity Graph for Model A/A’

is done with Model B (figure 15). The pairwise connectivity graph for Model
B/B’ uses twice the number of nodes the pairwise connectivity graph for Model
A/A’ uses. The number of edges is about four times as high.
Due to these differences in complexity, we chose to use the way to generate
models from ontologies shown by Model A (figure 13).

Setting up the initial map The initial similarity value of all match pairs is
set to 0.5. The original Similarity Flooding algorithm uses a similarity value
determined by a string comparison. However, in our application Similarity
Flooding shall only use structural information as name-based matching is al-
ready performed by the separate name-based matcher. Moreover, we will
use the matches the user manually confirmed or rejected to set up a more
meaningful initial map for the following matching iterations.

Creating the pairwise connectivity graph Every edge in the model is rep-
resented as a triple (s, p, o) with s being the source node, o the target node
and p the label of the edge. The pairwise connectivity graph’s edges are de-
fined by ((x, y), p, (x′, y′)) ∈ PCG(A,B)⇔ (x, p, x′) ∈ A∧ (y, p, y′) ∈ B where
A and B are the Models A and B and PCG(A, B) is the pairwise connectivity

Deliverable D5.1 Version 1.1 42

NEPOMUK 29.06.2007

1 for every edge (x, p, x′) from Model A
2 for every edge (y, p, y′) from Model B
3 add edge (x|y, p, x′|y′) to PCG
4 end
5 end

Algorithm 4: The PCG generating algorithm

Figure 15: Pairwise Connectivity Graph for Model B/B’

graph derived from the models. Note that every node of PCG(A, B) is an ele-
ment from A×B , representing a match pair. The pairwise connectivity graph
can be constructed by the following algorithm 4.
Here, only edges are considered, nodes must be created once referenced
by any edge. For an example, see figures 13 and 14 . Clearly, the more
equally-labeled edges are in the models, the more edges the PCG will consist
of.

Creating the induced propagation graph The induced propagation graph
(IPG) is constructed from the pairwise connectivity graph by adding a new
edge for every existing edge pointing in the opposite direction. Weights are
associated with the edges, indicating how well the similarity of a match pair
propagates to its neighbors and back. The weights can be computed by the
algorithm 5 . Figure 16 shows an example IPG corresponding to the PCG
shown in figure 14.
There are other ways to compute the IPG (see [46]).

Computing similarity values The calculation following the previous steps
is an interative fixpoint calculation, finding a vector of similarity values corre-
sponding to the match pairs (nodes) from the IPG that represents a fixpoint.
This means that the vector does not change even when performing a new
iteration of the algorithm. A similarity value σ(x, y) ≥ 0 gets assigned to each
node in the IPG labelled x|y. Similarity values are zero for match pairs not
occurring in the IPG.
σ(x, y)i denotes the similarity value of the match pair (x, y) in the i − th iter-
ation of the algorithm. σ0 therefore denotes all similarity values of the initial

Deliverable D5.1 Version 1.1 43

NEPOMUK 29.06.2007

Figure 16: Example Induced Propagation Graph

1 initialize all edges’ weights with zero
2 for every node d in the IPG
3 for each group g of equally-labeled edges originating from d in the PCG
4 for each edge p in group g

5 add 1/|g| to the weight of the edge corresponding to p in the IPG
6 end
7 end
8 for each group h of equally-labeled edges pointing to d in the PCG
9 for each edge q in group h

10 add 1/|h| to the weight of the edge corresponding to reversed q

11 in the IPG
12 end
13 end
14 end

Algorithm 5: The ICG generating algorithm

map. σ(x, y)i+1 can be derived from σ(x, y)i by calculating normalize(σ0 +
σ(x, y)i + ϑ(σ0 + σ(x, y)i)) where normalize divides all elements of the vector
passed to it by the maximum element of the vector (so the normalized vector’s
maximum element is 1.0).ϑ(x) denotes adding to every σ(x, y)i the weighted
σ(x, y)i-value of its neighbors in the IPG. A description how to implement
this using matrix-vector multiplication is given in the following paragraphs.
There are other variants of the fixpoint formula [46]. However, this formula
weights the initial map’s similarity values σ0 higher than other variants of the
fixpoint formula which fits our needs due to the initial map denoting the class
matches the user confirmed. The algorithm stops once the Euclidean length
of ∆(σ(x, y)i, σ(x, y)i−1)becomes less than a chosen ε (a fixpoint is found).
This algorithm can be implemented using a vector V representing the simi-
larity values for every node (match pair) of the IPG. Also, there is a matrix
G representing the weights of the IPG’s edges. The order of the matrices’
rows and columns must match the order of the vector’s elements meaning if
G1,1 is associated with node g of the IPG, V1 also must correspond to node g.
x′ = ϑ(x) then simply means multiplying G with x and storing the result in x′.
σi finally denotes match pair similarity σ(x, y)i = σ(y, x)i, therefore Similarity
Flooding yields undirected similarity. In order to obtain directed similarity, it is
possible to compute relative similarity by normalizing the maximum per-node
similarity to 1. See figure 17 for an example.
The node a occurs paired with the node r, s, and t (a|r, a|s, a|t). As the
similarity value 0.9 of a|t is the best similarity value node a can achieve,
the similarity values for a|r, a|s and a|t get divided by 0.9. Therefore, in

Deliverable D5.1 Version 1.1 44

NEPOMUK 29.06.2007

Figure 17: Computing Relative Similarity

the left-orientated column of the example, the optimal pair from a’s point of
view, a|t, gets assigned the maximum similarity value of 1. After calculating
the left-orientated similarity values, the right-orientated similarity values are
computed in the same manner. For example, from s’s point of view both
the a|s and the b|s pair are optimal (with their maximum similarity value being
0.5). Therefore, the right-orientated similarity values are computed by dividing
all pairs that include node s by 0.5.

6.2.4 Graph Matching

This measure is structure-based, using a classifier to determine entity similar-
ity. Similar to Similarity Flooding, the actual algorithm takes a graph as in-
put, so the input ontologies have to be transformed into generic graphs first.
Then, an association graph is contructed, relating both separate graphs to
each other. The graph matching module implements two different approaches
to generate association graphs, namely the Complete Similar Edges algorithm,
and the At Least One Edge algorithm. Using association graphs, maximum
common subgraphs (MCSs) can be determined. An MCS refers to structurally
equal parts of the two input graphs.

Completely Similar Edge Association Graph (CSE) The CSE association
graph is a strict version of an association graph. It is suitable in case of
regarding only taxonomies (Taxonomy graph) since then only a limited number
of distinct edges types are present (mainly the subclass-of edge type).

Definition 2 The CSE association graph of two graphs g1 and g2 is a non-la-
beled, undirected graph G = (V,E) where

• V = (u1, u2)|u1 ∈ V1 ∧ u2 ∈ V2 ∧ similar(α1(u1), α2(u2))

• E: An edge between two vertices (u1, v1) in g1 exists and edge (u2, v2)
in g2 with

1. the type of (u1, v1) is equal to the type of (u1, v1) and

2. similar(α((u1, v1)), α((u2, v2))) and vice versa,

or if there is neither an edge between (u1, v1) nor between (u2, v2).

Hence, the number of edges between (u1, v1) and (u2, v2) must be the same.

Deliverable D5.1 Version 1.1 45

NEPOMUK 29.06.2007

At least One Edge Association Graph (ALOE) This type of association
graph is less strict version than CSE and is more suitable for ontology matching
since it is better suited for handling graphs with many different edge types
(that ontologies typically correspond to).

Definition 3 The ALOE association graph of two graphs g1 and g2 is a non-la-
beled, undirected graph G = (V,E) where

• V = (u1, u2)|u1 ∈ V1 ∧ u2 ∈ V2 ∧ similar(α1(u1), α2(u2))

• E: An edge between two vertices (u1, v1) and (u2, v2) of the association
graph exists, either if, For at least one edge (u1, v1) in g1 exists an edge
(u2, v2) in g2 with

1. the type of (u1, v1) is equal to the type of (u1, v1) and
2. similar(α((u1, v1)), α((u2, v2)))

or if there is neither an edge between (u1, v1) nor between (u2, v2).

Hence, the number of edges must not be the same. The function similar()
denotes a similarity measure for vertices and edges, which can be based on a
string distance (e.g. Levenshtein distance), a distance from a dictionary (e.g.
wordnet), or more generally, a similarity measure from a previous alignment
process, or even a combination of several similarity measures.
Originally, the definition of the maximum common subgraph of two graphs
is strict in the sense that only exact subgraphs are taken into consideration.
It is impractical to apply this definition to ontologies, since exact matching
subparts of ontologies are rare in the NEPOMUK use case—ontologies for the
same domain are created by end users without any knowledge of each other
so while it is likely that similar structures are created, exact matches are very
unlikely to occur. Therefore, a weaker definition of the MCS is used in our
implementation, allowing minor derivations.

6.3 Alignment Generators

Alignment generators take the data computed by similarity measures and com-
pute an actual alignment. Alignments can be created to fulfill several different
requirements—a typical requirement for alignments is that only two classes
may get marked as equivalent (i.e., any class in ontology A can be marked as
equivalent to at maximum one class in ontology B and vice versa). Again, this
alignment can be refined further—for example, class mappings can be derived
from similarity using a threshold algorithm or more advanced techniques such
as algorithms creating alignments that fulfill stable marriage requirements27.
Currently, a number of simple alignment generators are implemented in the
metadata alignment component.

Phase-Tab Algorithm This is an alignment generator using the input of three
different similarity measures as input, namely string-based similarity (im-
plemented using n-grams), structure-based similarity (implemented us-
ing similarity flooding), and instance-based similarity (implemented us-
ing an external document classification component that compares text
documents attached to concepts). Similarities are combined using a

27 In a stable marriage or stable matching no element of the first matched set
(classes of ontology A in our case) prefers an element of the second matched
set (classes of ontology B in our case) that also prefers the first element. See
http://en.wikipedia.org/wiki/Stable_Marriage_Problem for details.

Deliverable D5.1 Version 1.1 46

NEPOMUK 29.06.2007

Figure 18: The Phase-Tab Algorithm

modified Borda count28 method. This algorithm, or more specifically, its
similarity flooding-based similarity measure, can incorporate user feed-
back, enhancing its results. In NEPOMUK the interfaces required for user
feedback can be added to components that do structural recommenda-
tion or search. For completely automated mapping, we found that using
pseudo relevance feedback also yields results that are quite acceptable.
See figure 18 for a representation of data flow in this algorithm.

Simple Borda Count This generator uses a Borda count algorithm [69] to
combine an arbitrary set of similarity measures to one alignment. The
Borda count for a match pair is the sum of the number of pairs ranked
below it by each matcher. Compared to the Highest Rank Method which
basically implements a maximum operator, the Borda Count Method can
be compared to an average operator. Matchers which assign a low rank
to a match pair get ignored by the Highest Rank Method while the Borda
Count Method takes this decision in account when computing the overall
ranking.

Simple Evidence Converts a single similarity measure using a threshold al-
gorithm into an alignment. Useful for testing.

6.4 Evaluation

A preliminary evaluation of the Phase component has been done using the
Ontology Alignment Evaluation Initiative Test library29 that provides a frame-
28 The Borda count is a single winner election method. In our case, it is used for combining
similarities that use different scales - in this case, other methods such as arithmetic mean fail.
See [69] for details. 29 http://oaei.ontologymatching.org/tests/

Deliverable D5.1 Version 1.1 47

NEPOMUK 29.06.2007

work and extensive test ontologies as well as a gold standard for expected
mappings. Test results can be found on the Phase component’s website30.
It has to be noted that these results have been achieved without extensive
optimizing. In the NEPOMUK context, we expect to enhance results primarily
due to adapting to the application domain.

30 http://dev.nepomuk.semanticdesktop.org/wiki/PhaseAlignment

Deliverable D5.1 Version 1.1 48

NEPOMUK 29.06.2007

7 Conclusions

In this deliverable we have implemented the basic functionalities for the se-
mantic social networking and knowledge exchange contributions of WP5000
to the Social Semantic Desktop NEPOMUK. We developed, implemented, and
analyzed methods for community detection and labeling, as well for (semi-)
automatic metadata alignment.
The Community Manager plays the central role for the community support
challenges of WP5000 and with the implementation done within this deliver-
able, it allows the extraction of communities of users inside the NEPOMUK P2P
network. Those communities can be defined as belonging to a user or by their
affinity to a certain topic.
Besides its importance for WP5000, the Community Manager provides large
potential benefit for the case studies. The members of the Mandriva com-
munity will be able to harness the community detection for discovering users
who run into similiar problems as they do (and to contact them to discuss
possible workarounds), using the tags attributed automatically or by hand to
their questions. The knowledge workers at SAP can discover other collegues
interested in similiar topics as they are by querying the Community Manager
for users interested in a specific topics or using their user name as centre of
the community, or the consultants at PRC are able to quickly find associates
which have knowledge in a certain field.
While we have shown how communities around given tags or users can be
inferred by FolkRank, some open questions remain to be researched:

• What exactly constitutes a community in a folksonomy?

• Can different kinds of communities be distinguished?

• Which elements of a folksonomy should be used with FolkRank to start
a community?

Those questions lead to the next subtasks of the Social Network Analysis task
of WP5000, which include the analysis of the structure within communities,
e.g., finding leaders and followers, or finding communities with similar struc-
tures. This will be augmented by algorithms to detect trends and threads
within and across communities of users. There we want to support users of
the Social Semantic Desktop in finding relevant topics in communities and in
gaining an understanding of their relation to each other.
In the metadata alignment component we presented a framework that col-
lects and integrates heuristic evidences for ontology mappings. The frame-
work employs three basic sources of evidence for ontology mappings, namely
term-based, topology-based and instance-based evidence. In implementing
the alignment generator, we use a rather simple voting schema for the aggre-
gation of evidence, the so-called Borda Count. Further work can comprise:

• more flexible aggregation of evidence, e.g., by using logic-based evi-
dence integration and by adaptive aggregations functions whose param-
eters may be learned,

• support for other types of relationships, e.g., by additional heuristics for
the instance-based evidence generation, and

• richer mapping languages that also allow for mapping composed con-
cepts.

Deliverable D5.1 Version 1.1 49

NEPOMUK 29.06.2007

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules be-
tween sets of items in large databases. In Proceedings of the 1993 ACM
SIGMOD international conference on Management of Data (SIGMOD’93),
pages 207–216. ACM Press, May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th international conference on
Very Large Data Bases (VLDB’94), pages 478–499. Morgan Kaufmann,
September 1994.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of
the 11th International Conference on Data Engineering (ICDE’95), pages
3–14. IEEE Computer Society Press, March 1995.

[4] A. Arnauld and P. Nicole. La logique ou l’art de penser — contenant,
outre les règles communes, plusieurs observations nouvelles, propres à
former le jugement. Ch. Saveux, 1668.

[5] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining
frequent patterns with counting inference. SIGKDD Explorations, Special
Issue on Scalable Algorithms, 2(2):71–80, 2000.

[6] R. J. Bayardo. Efficiently mining long patterns from databases. In Pro-
ceedings of the 1998 ACM SIGMOD international conference on Manage-
ment of Data (SIGMOD’98), pages 85–93. ACM Press, June 1998.

[7] K. Biedermann. How triadic diagrams represent conceptual structures. In
D. Lukose, H. S. Delugach, M. Keeler, L. Searle, and J. F. Sowa, editors,
Conceptual Structures: Fulfilling Peirce’s Dream, number 1257 in LNAI,
pages 304–317, Heidelberg, 1997. Springer.

[8] K. Biedermann. Triadic Galois connections. In K. Denecke and O. Lüders,
editors, General algebra and applications in discrete mathematics, pages
23–33, Aachen, 1997. Shaker Verlag.

[9] K. Biedermann. Powerset trilattices. In M.-L. Mugnier and M. Chein,
editors, Conceptual Structures: Theory, Tools and Applications, number
1453 in LNAI, pages 209–224, Heidelberg, 1998. Springer.

[10] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency
queries by means of free-sets. In PKDD ’00: Proceedings of the 4th Euro-
pean Conference on Principles of Data Mining and Knowledge Discovery,
pages 75–85, London, UK, 2000. Springer-Verlag.

[11] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Computer Networks and ISDN Systems,
30(1-7):107–117, April 1998.

[12] A. Bykowski and C. Rigotti. A condensed representation to find frequent
patterns. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-
-SIGACT-SIGART symposium on Principles of database systems, pages
267–273, New York, NY, USA, 2001. ACM Press.

[13] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
In PKDD, pages 74–85, 2002.

[14] C. Carpineto and G. Romano. Concept Data Analysis. Wiley, 2004.

[15] C. Cattuto, V. Loreto, and L. Pietronero. Collaborative tagging and semi-
otic dynamics, May 2006. arXiv:cs.CY/0605015.

Deliverable D5.1 Version 1.1 50

NEPOMUK 29.06.2007

[16] A. Clauset, M. Newman, and C. Moore. Finding community structure in
very large networks. Physical Review E, 70:066111, 2004.

[17] Connotea Mailing List. https://lists.sourceforge.net/lists/listinfo/
connotea-discuss.

[18] F. Dau and R. Wille. On the modal unterstanding of triadic contexts. In
R. Decker and W. Gaul, editors, Classification and Information Processing
at the Turn of the Millenium, Proc. Gesellschaft für Klassifikation, 2001.

[19] H. Do and E. Rahm. COMA - a system for flexible combination of schema
matching approaches. In Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002.

[20] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology matching:
A machine learning approach, 2003.

[21] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and
A. Tomkins. Visualizing tags over time. In Proc. of the 15th Interna-
tional WWW Conference, 2006.

[22] J. Duch and A. Arenas. Community detection in complex networks using
extremal optimization. Physical Review E, 72:027104, 2005.

[23] B. Ganter. Algorithmen zur formalen Begriffsanalyse. In B. Ganter,
R. Wille, and K. E. Wolff, editors, Beiträge zur Begriffsanalyse, pages
241–254. B.I.–Wissenschaftsverlag, Mannheim, 1987.

[24] B. Ganter and S. A. Obiedkov. Implications in triadic contexts. In Con-
ceptual Structures at Work: 12th International Conference on Conceptual
Structures, volume 3127 of Lecture Notes in Computer Science, pages
186–195. Springer, 2004.

[25] B. Ganter, G. Stumme, and R. Wille, editors. Formal Concept Analysis –
Foundations and Applications, volume 3626 of LNAI, Heidelberg, 2005.
Springer.

[26] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical founda-
tions. Springer, 1999.

[27] H. Halpin, V. Robu, and H. Shepard. The dynamics and semantics of
collaborative tagging. In Proceedings of the 1st Semantic Authoring and
Annotation Workshop (SAAW’06), 2006.

[28] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social Bookmarking Tools
(I): A General Review. D-Lib Magazine, 11(4), April 2005.

[29] P. Heymann and H. Garcia-Molina. Collaborative creation of commu-
nal hierarchical taxonomies in social tagging systems. Technical Report
2006-10, Computer Science Department, April 2006.

[30] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval
in folksonomies: Search and ranking. In Y. Sure and J. Domingue, ed-
itors, The Semantic Web: Research and Applications, volume 4011 of
LNAI, pages 411–426, Heidelberg, June 2006. Springer.

[31] R. Jäschke, A. Hotho, C. Schmitz, B. Ganter, and G. Stumme. Trias - an
algorithm for mining iceberg tri-lattices. In Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM 06), pages 907–911,
Hong Kong, December 2006. IEEE Computer Society.

Deliverable D5.1 Version 1.1 51

NEPOMUK 29.06.2007

[32] M. Kamber, J. Han, and Y. Chiang. Metarule-guided mining of multi-di-
mensional association rules using data cubes. In Proc. of the 3rd KDD
Int’l Conf., August 1997.

[33] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM, 46(5):604–632, 1999.

[34] S. Krolak-Schwerdt, P. Orlik, and B. Ganter. TRIPAT: a model for ana-
lyzing three-mode binary data. In H. H. Bock, W. Lenski, and M. M.
Richter, editors, Studies in Classification, Data Analysis, and Knowledge
Organization, volume 4 of Information systems and data analysis, pages
298–307. Springer, Berlin, 1994.

[35] M. Lacher and G. Groh. Facilitating the exchange of explicit knowledge
through ontology mappings, 2001.

[36] R. Lambiotte and M. Ausloos. Collaborative tagging as a tripartite net-
work, Dec 2005. arXiv:cs.DS/0512090.

[37] F. Lehmann and R. Wille. A triadic approach to formal concept analysis.
In G. Ellis, R. Levinson, W. Rich, and J. F. Sowa, editors, Conceptual struc-
tures: applications, implementation and theory, volume 954 of Lecture
Notes in Artificial Intelligence, pages 32–43. Springer Verlag, 1995.

[38] F. Lehmann and R. Wille. A triadic approach to formal concept analysis.
In G. Ellis, R. Levinson, W. Rich, and J. F. Sowa, editors, Conceptual
Structures: Applications, Implementation and Theory, volume 954 of
Lecture Notes in Computer Science, pages 32–43. Springer, 1995.

[39] B. Lent, R. Agrawal, and R. Srikant. Discovering trends in text databases.
In Proceedings of the 3rd international conference on Knowledge Discov-
ery and Data mining (KDD’97), pages 227–230. AAAI Press, August 1997.

[40] D. Lin and M. Kedem. A new algorithm for discovering the maximum
frequent set. In Proceedings of the 6th Int’l Conf.on Extending Database
Technology (EDBT), pages 105–119, March 1998.

[41] B. Lund, T. Hammond, M. Flack, and T. Hannay. Social Bookmarking
Tools (II): A Case Study - Connotea. D-Lib Magazine, 11(4), April 2005.

[42] H. Mannila. Methods and problems in data mining. In Proceed-
ings of the 6th biennial International Conference on Database Theory
(ICDT’97), Lecture Notes in Computer Science, Vol. 1186, pages 41–55.
Springer-Verlag, January 1997.

[43] A. Mathes. Folksonomies – Cooperative Classification and
Communication Through Shared Metadata, December 2004.
http://www.adammathes.com/academic/computer-mediated-

communication/folksonomies.html.

[44] D. McGuinness, R. Fikes, J. Rice, and S. Wilder. The chimaera ontology
environment. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI 2000), 2000.

[45] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for
merging and testing large ontologies. In Seventh International Confer-
ence, 2000.

[46] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile
graph matching algorithm. In Proc. 18th ICDE Conf., 2001.

Deliverable D5.1 Version 1.1 52

NEPOMUK 29.06.2007

[47] P. Mika. Ontologies Are Us: A Unified Model of Social Networks and
Semantics. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors,
ISWC 2005, volume 3729 of LNCS, pages 522–536, Berlin Heidelberg,
November 2005. Springer-Verlag.

[48] P. Mika. Ontologies Are Us: A Unified Model of Social Networks and
Semantics. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, edi-
tors, ISWC 2005, volume 3729 of LNCS, pages 522–536. Springer-Verlag,
November 2005.

[49] M. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69:026113, 2004.

[50] N. F. Noy and M. A. Musen. Anchor-prompt: Using non-local context
for semantic matching. In Workshop on Ontologies and Information
Sharing at the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-2001), Seattle, WA, 2001.

[51] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set based discov-
ery of small covers for association rules. In Actes des 15èmes journées
Bases de Données Avancées (BDA’99), pages 361–381, Octobre 1999.

[52] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Proceedings of the 7th biennial
International Conference on Database Theory (ICDT’99), Lecture Notes
in Computer Science, Vol. 1540, pages 398–416. Springer-Verlag, Jan-
uary 1999.

[53] N. Pasquier, R. Taouil, Y. Bastide, G. Stumme, and L. Lakhal. Generating a
condensed representation for association rules. J. Intelligent Information
Systems (JIIS), 24(1):29–60, 2005.

[54] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining
frequent closed itemsets. In ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, pages 21–30, 2000.

[55] C. S. Peirce. Collected Papers. Harvard Universit Press, Cambridge,
1931–1935.

[56] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi.
Defining and identifying communities in networks, Feb 2004.
arXiv:cond-mat/0309488v2.

[57] E. Rahm and P. A. Bernstein. A survey of approaches to auto-
matic schema matching. VLDB Journal: Very Large Data Bases,
10(4):334–350, 2001.

[58] F. Rioult. Extraction de connaissances dans les bases de donnees com-
portant des valeurs manquantes ou un grand nombre d’attributs. PhD
thesis, Université de Caen Basse-Normandie, 2005.

[59] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme. Mining associa-
tion rules in folksonomies. In V. Batagelj, H.-H. Bock, A. Ferligoj, and
A. Žiberna, editors, Data Science and Classification: Proc. of the 10th
IFCS Conf., Studies in Classification, Data Analysis, and Knowledge Orga-
nization, pages 261–270, Berlin, Heidelberg, 2006. Springer.

[60] P. Schmitz. Inducing ontology from flickr tags. In Collaborative Web
Tagging Workshop at WWW2006, Edinburgh, Scotland, May 2006.

[61] P. Shvaiko and J. Euzenat. A survey of schema-based matching ap-
proaches. J. Data Semantics IV, 3730:146–171, 2005.

Deliverable D5.1 Version 1.1 53

NEPOMUK 29.06.2007

[62] C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets : General-
izing association rules to dependence rules. Data Mining and Knowledge
Discovery, 2(1):39–68, January 1998.

[63] G. Stumme. Conceptual knowledge discovery with frequent concept lat-
tices. FB4-Preprint 2043, TU Darmstadt, 1999.

[64] G. Stumme. A finite state model for on-line analytical processing in triadic
contexts. In B. Ganter and R. Godin, editors, Proceedings of the 3rd
International Conference on Formal Concept Analysis, volume 3403 of
Lecture Notes in Computer Science, pages 315–328. Springer, 2005.

[65] G. Stumme, R. Taouil, Y. Bastide, N. Pasqier, and L. Lakhal. Computing
iceberg concept lattices with titanic. J. on Knowledge and Data Engineer-
ing, 42(2):189–222, 2002.

[66] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Intelligent
structuring and reducing of association rules with formal concept analy-
sis. In F. Baader, G. Brewker, and T. Eiter, editors, KI 2001: Advances
in Artificial Intelligence, volume 2174 of LNAI, pages 335–350. Springer,
Heidelberg, 2001.

[67] TagDB Mailing List. http://lists.tagschema.com/mailman/listinfo/
tagdb.

[68] R. Taouil. Algorithmique du treillis des fermés : application à l’analyse
formelle de concepts et aux bases de données. PhD thesis, Université de
Clermont-Ferrand II, 2000.

[69] M. van Erp and L. Schomaker. Variants of the borda count method for
combining ranked classi er hypotheses, 2000.

[70] R. Wille. Restructuring lattice theory: An approach based on hierarchies
of concepts. In I. Rival, editor, Ordered Sets, pages 445–470. Reidel,
Dordrecht-Boston, 1982.

[71] R. Wille. The basic theorem of triadic concept analysis. Order,
12:149–158, 1995.

[72] R. Wille and M. Zickwolff. Grundlagen einer triadischen Begriffsanalyse.
In G. Stumme and R. Wille, editors, Begriffliche Wissensverarbeitung.
Methoden und Anwendungen, pages 125–150, Berlin-Heidelberg, 2000.
Springer-Verlag.

[73] W. Xi, B. Zhang, Y. Lu, Z. Chen, S. Yan, H. Zeng, W. Ma, and E. Fox. Link
fusion: A unified link analysis framework for multi-type interrelated data
objects. In Proc. 13th International World Wide Web Conference, New
York, 2004.

[74] M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed asso-
ciation rule mining. technical report 99–10. Technical report, Computer
Science Dept., Rensselaer Polytechnic, October 1999.

[75] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for
fast discovery of association rules. In Proceedings of the 3rd international
conference on Knowledge Discovery and Data mining (KDD’97), pages
283–286. AAAI Press, August 1997.

[76] A. V. Zhdanova and P. Shvaiko. Community-driven ontology matching. In
European Semantic Web Conference, pages 34–49, Budva, Montenegro,
2006.

Deliverable D5.1 Version 1.1 54

NEPOMUK 29.06.2007

A Abbreviations

ALOE At least One Edge

API Application Programming Interface

CSE Completely Similar Edge

DCS Document Classification Stores

ER Entity-Relation

FCA Formal Concept Analysis

FOAF Friend of a Friend

HTML Hypertext Markup Language

HTTP Hyptertext Transfer Protocol

IPG Induced Propagation Graph

MCS Maximum Common Subgraphs

NOA NEPOMUK Annotation Ontology

NRL NEPOMUK Representation Language

OSGi Open Services Gateway Initiative

OWL Web Ontology Language

P2P Peer-to-Peer

PCG Pairwise Connectivity Graph

PIMO Personal Information Management Ontology

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WSDL Web Service Description Language

XML Extensible Markup Language

Deliverable D5.1 Version 1.1 55

	Introduction
	Requirements and Objectives
	Community Manager
	(Semi-)Automatic Metadata Alignment

	State of the Art
	Community Detection
	Social Network Analysis in Folksonomies
	(Semi-) Automatic Metadata Alignment

	Community Support Architecture
	Community Manager
	Service Description
	Architecture
	Gathering Data
	Relation to other components
	Invocation Example

	Metadata Alignment
	Service Description
	Architecture of Metadata Alignment
	Relation to other components

	Community Detection
	Social Resource Sharing and Folksonomies
	Adapting PageRank for Folksonomies
	FolkRank---Community Detection in Folksonomies
	Conceptual Clustering of Folksonomies
	The Trias Algorithm for Mining all Frequent Tri-Concepts

	Metadata Alignment
	Ontology Adapters
	Similarity Measures
	String Based Similarity
	Acronym Matcher
	Similarity Flooding
	Graph Matching

	Alignment Generators
	Evaluation

	Conclusions
	Abbreviations

