
Integrated Project

Priority 2.4.7

Semantic based knowledge systems

Metadata Sharing and
Recommendation Application

First Prototype

Deliverable D5.2

Version 1.0

17.12.2007

Dissemination level: PU

Nature Prototype

Due date 31.12.2007

Lead contractor LEIBNIZ UNIVERSITAET HANNOVER

Start date of project 01.01.2006

Duration 36 months

NEPOMUK 17.12.2007

Authors

Gianluca Demartini, L3S Research Center
Robert Jäschke, L3S Research Center
Rodolfo Stecher, L3S Research Center
Parisa Haghani, EPFL Ecole Polytechnique Fédérale de Lausanne

Mentors

Leo Sauermann, DFKI German Research Center for Artificial Intelligence DFKI GmbH
Roman Schmidt, EPFL Ecole Polytechnique Fédérale de Lausanne

Contributors

Vasilios Darlagiannis, EPFL Ecole Polytechnique Fédérale de Lausanne
Philippe Cudré-Mauroux, EPFL Ecole Polytechnique Fédérale de Lausanne
Claudia Niederée, L3S Research Center

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Trippstadter Str. 122
67663 Kaiserslautern
Germany
E-Mail: bernardi@dfki.uni-kl.de, phone: +49 631 205 75 105

Partners

DEUTSCHES FORSCHUNGSZENTRUM F. KUENSTLICHE INTELLIGENZ GMBH
IBM IRELAND PRODUCT DISTRIBUTION LIMITED
SAP AG
HEWLETT PACKARD GALWAY LTD
THALES S.A.
PRC GROUP - THE MANAGEMENT HOUSE S.A.
EDGE-IT S.A.R.L
COGNIUM SYSTEMS S.A.
NATIONAL UNIVERSITY OF IRELAND, GALWAY
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE
LEIBNIZ UNIVERSITAET HANNOVER
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS
KUNGLIGA TEKNISKA HOEGSKOLAN
UNIVERSITA DELLA SVIZZERA ITALIANA
IRION MANAGEMENT CONSULTING GMBH

Copyright: NEPOMUK Consortium 2007
Copyright on template: Irion Management Consulting GmbH 2007

Deliverable D5.2 Version 1.0 ii

NEPOMUK 17.12.2007

Versions

Version Date Reason

0.1 2007-08-24 First draft

0.2 2007-10-09 Added sections on recommending tags

0.3 2007-10-16 Added sections on architecture

0.4 2007-10-19 Added scenarios to requirements section and worked on architec-
ture section

0.5 2007-10-25 Added introduction and modified architecture section

0.6 2007-10-31 Added executive summary

0.7 2007-12-05 Incorporated mentors comments, shortened parts of section 6.5

0.8 2007-12-07 Added Appendix: Specification of Exchange Formats & Workflows
for Metadata Sharing and Recommendations

1.0 2007-12-17 Final version; finalisation by IMC

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for NEPOMUK partners

Deliverable D5.2 Version 1.0 iii

NEPOMUK 17.12.2007

Executive summary

WP5000 investigates and exploits the knowledge exchange in social networks
and provides tools and services for community identification and analysis as
well as for supporting knowledge exchange in these semantic social networks.
The goal of the second deliverable is to provide the basic functionality for meta-
data sharing and recommendation. The provided functionality is packaged in
three components (as they have been identified in the Nepomuk architecture):
i) Metadata Sharing, ii) Metadata Recommender, and iii) Expert Recommender.
These components can be adopted and support several scenarios focusing on
social interactions among desktops. The components’ functionality is provided
to other Nepomuk components or applications via well defined APIs, which
have been tested by prototype applications.
Shortly, our work resulted in the following:

• The Metadata Sharing1 component, being responsible for building a se-
mantic overlay infrastructure based on the P2P2 infrastructure provided
by WP4000;

• The Metadata Recommender3 component, which provides the user with
recommendations built using the metadata in the network of Nepomuk
peers. By analyzing the overlap between metadata and resources, it pro-
vides recommendation for: i) metadata enrichment, ii) metadata-based
recommendation of new resources, and iii) recommendation for tags;

• The Expert Recommender4 component, which provides the users with a
list of persons who are experts on a given topic.

The main task of the Metadata Sharing component is to provide a semantic
overlay infrastructure on top of a P2P overlay network which separates the
logical layer – where data, schemas and schema mappings are managed –
from the physical layer consisting of the structured P2P network. It fosters
semantic interoperability through pair-wise schema mappings and query refor-
mulation. Thus, heterogeneous but semantically related information sources
can all be queried transparently using iterative query reformulation.
For the realization of the Metadata Sharing component:

• GridVine, the first metadata sharing system addressing simultaneously
both scalability and semantic heterogeneity is described;

• A general overview of our infrastructure is provided with details on both
the P2P access structure used for indexing information and routing mes-
sages and the higher semantic layer responsible for managing structured
content;

• The decentralized information integration based on pair-wise schema
mappings between heterogeneous but semantically related schemas is
given;

• Several distributed query resolution mechanisms are discussed and we
illustrate the performance of our infrastructure.

To accomplish the recommendation tasks provided by the Metadata Recom-
mender and by the Expert Recommender:
1 Located on the Nepomuk SVN Server https://dev.nepomuk.semanticdesktop.org

in the directory /repos/trunk/java/org.semanticdesktop.nepomuk.comp.metadatasharing
2 Abbreviations are listed in the Appendix A. 3 Located on the Nepo-
muk SVN Server https://dev.nepomuk.semanticdesktop.org in the directory
/repos/trunk/java/org.semanticdesktop.nepomuk.comp.metadatarecommender 4 Located
on the Nepomuk SVN Server https://dev.nepomuk.semanticdesktop.org in the directory
/repos/trunk/java/org.semanticdesktop.nepomuk.comp.expertrecommender

Deliverable D5.2 Version 1.0 iv

https://dev.nepomuk.semanticdesktop.org
https://dev.nepomuk.semanticdesktop.org
https://dev.nepomuk.semanticdesktop.org

NEPOMUK 17.12.2007

• We describe how we can provide recommendations to enrich the meta-
data description of the current desktop resources using the shared meta-
data in the Nepomuk network of peers, and how we can provide recom-
mendations of new resources similar to a given resource;

• We present a model for finding experts in a given topic using the re-
sources on the desktop; our model also allows to retrieve both people
and document together;

• We describe how the folksonomy structure of the Nepomuk network of
peers can be used to find suitable tag recommendations for resources
the user wants to annotate.

The implemented Metadata Recommender and Expert Recommender compo-
nents allow the recommendation of new resources, persons, and of additional
metadata using the Nepomuk P2P network.
Summarizing, we have developed the necessary functionalities for the seman-
tic social networking and knowledge exchange. We have designed, analyzed
and implemented methods for sharing of metadata and for recommending re-
sources, persons, and metadata. In the rest of the project the focus will be put
on extending the available functionalities, integration and deeper evaluation.
Together with Deliverable 5.2 we deliver a report on “Specification of Exchange
Formats & Workflows for Metadata Sharing and Recommendations” which was
written in the first year of the project. In the description of work it was not
mentioned to be part of a deliverable but an intermediate report. We hereby
hand this report in later, as promised to the reviewers. Since it has been writ-
ten at the very beginning of the project, the terminology partly has changed.
The report is delivered as an appendix to this document (cf. Appendix B).

Deliverable D5.2 Version 1.0 v

NEPOMUK 17.12.2007

Table of contents

1 Introduction . 1
2 Requirements and Objectives . 2

2.1 Metadata Sharing . 2
2.2 Metadata Recommendation . 3

3 State of the Art . 5
3.1 Metadata Management and Sharing. 5
3.2 Metadata(-based) Recommendation . 5
3.3 Recommendation of People . 6
3.4 Recommendation of Tags . 7

4 Metadata Sharing and Recommendation Architecture 9
4.1 Metadata Sharing . 9

4.1.1 Service Description . 10
4.1.2 Architecture of Metadata Sharing 10

4.2 Metadata Recommendation Architecture 11
4.2.1 Service Description . 12
4.2.2 Relations to other components 13

5 Metadata Sharing. 15
5.1 Overview.. 15
5.2 GridVine: A Three-Tier Semantic Overlay Network. 15

5.2.1 Organizing Peers and Load-Balancing the In-
dex at the Overlay Layer . 17

5.2.2 Sharing Information at the Semantic Mediation
Layer . 17

5.3 Integrating Data at the Semantic Mediation Layer 18
5.4 Resolving Queries in GridVine . 19

5.4.1 Self-Organizing Mappings. 20
5.4.2 Connectivity at the Mediation Layer 21
5.4.3 Creation & Deprecation of Mappings 22
5.4.4 Performance Evaluation. 22

6 Metadata Recommendation . 24
6.1 Overview.. 24
6.2 Metadata based Recommendation of Files 24

6.2.1 Evaluation. 26
6.3 Metadata Enrichment . 28

6.3.1 Evaluation. 28
6.4 Recommendation of Persons . 29

6.4.1 Expert Search: Problem Definition 30
6.4.2 Formal Definition of the Basic Model 31
6.4.3 Extensions of the Model . 32
6.4.4 Projection similarity . 33
6.4.5 Vector Space Dimensions (T) . 33
6.4.6 Evaluation. 34

6.5 Recommendation of Tags . 37
6.5.1 A Formal Model for Folksonomies. 38
6.5.2 Tag Recommender Systems . 38
6.5.3 Collaborative Filtering. 38

Deliverable D5.2 Version 1.0 vi

NEPOMUK 17.12.2007

6.5.4 A Graph Based approach . 39
6.5.5 Evaluation. 40
6.5.6 Results . 43

7 Conclusion . 46
A Abbreviations . 53
B ST5210 — Specification of Exchange Formats & Workflows for

Metadata Sharing and Recommendations. 54

Deliverable D5.2 Version 1.0 vii

NEPOMUK 17.12.2007

1 Introduction

In the context of Nepomuk- The Social Semantic Desktop - the social as-
pect is brought in mainly by WP5000: the social networking components are
utilized to build and maintain topic- and content-specific interconnections be-
tween distributed individual workspaces. After the first deliverable of WP5000,
which provided a first version of a prototype of community detection algorithm
and (semi)-automatic metadata alignment, the aim of this deliverable is to
provide a first version of a documented and tested prototype of a metadata
sharing and recommendation application. The first two deliverables provide
prototypes of several components which will make the semantic desktop richer
in functionality related to social aspects. Finally, in the third deliverable an in-
tegrated prototype of social infrastructure and software will be delivered.
While in the first year of the Nepomuk project the focus has been put on the
semantic aspects of the Desktop, in the second and third year WP5000 aims
at providing social behavior to the Desktop, thus allowing the user to benefit
from being part of a community. This deliverable exploits advantages of the
social dimension in order to provide new ways of interaction and richer infor-
mation sources for the user. Prototype applications for metadata sharing and
for metadata recommendations are delivered. The user has several means
of sharing and searching for metadata in the P2P community and her expe-
rience is improved with: i) metadata-based recommendation of resources, ii)
metadata enrichment functionalities, iii) experts recommendation, and iv) tag
recommendations.
More particularly, in this deliverable, we describe GridVine, the first meta-
data sharing system addressing simultaneously both scalability and semantic
heterogeneity. Built following the P2P paradigm, it eliminates all central com-
ponents and concentrates rather on bottom-up and decentralized processes.
GridVine is a semantic overlay infrastructure built on top of a P2P access struc-
ture, which separates the logical layer – where data, schemas and schema
mappings are managed – from a physical layer consisting of the structured
P2P network supporting decentralized indexing, key load-balancing and ef-
ficient routing. Our system is totally decentralized, yet it fosters semantic
interoperability through pair-wise schema mappings and query reformulation.
In GridVine, heterogeneous but semantically related information sources can
all be queried transparently using iterative query reformulation.
Moreover, in this deliverable we describe metadata recommendation solutions.
We present a metadata-based recommendation of resources based on the sim-
ilarity of the resources metadata in the P2P network. We present a metadata
enrichment algorithm which create additional metadata for the desktop re-
sources looking for similar items in the P2P network. We present a model
for finding and recommending people who are experts on a given topic. We
present algorithms for recommending tags to the user.
The deliverable is structured as follows. In Section 2 we describe the require-
ments and objectives of the metadata sharing and of the metadata recommen-
dation component. Then, in Section 3 we illustrate the state of the art in the
field of metadata sharing, metadata recommendation, people search, and tag
recommendation. After this, in Section 4, we describe the architecture of the
metadata sharing and recommendation components also describing the inter-
action with other Nepomuk components. In Section 5 we describe how the
Metadata Sharing component is build on top of a P2P overlay providing global
sharing and search support for metadata in RDF format. We elaborate on the
decentralized nature of our approach for fostering semantic interoperability
by introducing a bottom-up approach. In Section 6 we show our approach
to provide recommendations to the user. In particular we describe method-
ologies for metadata enrichment, metadata based recommendation of files,
people recommendation, and tags recommendation. Section 7 concludes the
document summarizing and discussing the obtained results.

Deliverable D5.2 Version 1.0 1

NEPOMUK 17.12.2007

2 Requirements and Objectives

2.1 Metadata Sharing

In the Metadata Sharing component we concentrate on enabling global search
for structured data on top of individual desktops. Leveraging on the P2P
paradigm, the whole process is done in a bottom-up and totally decentralized
manner.
While semantic web technologies have gained popularity to help organize large
amounts of data, these solutions typically operate in predefined communities
and do not enable data sharing outside the data’s original boundaries. How-
ever there is a need for enabling structured data sharing and search in large
scales. Since enforcing a global schema for structured data over large network
of users is not possible, mappings between schemas of different users should
exist and properly shared to enable semantic interoperability.
A good example of functionalities of the Metadata Sharing component can be
demonstrated through a scenario similar to the one presented in D5.1 (For
more information about the personas in this scenario see [52]). Kim and
Alistair are among a large network of users who publish metadata about their
digital assets through a decentralized infrastructure. This metadata is in RDF
format, however each of Kim and Alistair as well as other users, either define
and customize his/her own schema for the metadata shares or use an existing
popular schema. To enable global search over their data, Kim and Alistair use
some alignment generators to automatically produce some mappings among
their schemas and some popular schemas and publish them as well. Kim is
looking for an answer to his current problem (how to install his new graphic
card) and issues a query, which tries to find the right driver for his type of
graphic card, produced by a certain manufacturer. Formalized, the query looks
as follows:
(SELECT ?d WHERE ?x hasManufacturer A AND ?x rdf:type GraphicCard AND
?x hasDriver ?d).
Alistair holds this information but his schema for computer gadgets is different
of the one Kim uses. However a two way mapping between both Kim’s and
Alistair’s schemas for computer gadgets and a popular schema for computer
gadgets exist. If the system can route Kim’s query, utilizing the published
mappings between schemas, Alistair’s data could also be searched and the
search function could provide Kim with the answer he needs.
For the Metadata Sharing component we see the following requirements:

• Scalability: A large network of independent users with the need to share
structured data in a decentralized manner.

• Semantic Interoperability: Independent end-users who can create both
data and schemas to organize their information in customized ways and
need to share this information outside their original boundaries.

Several recent research efforts concentrate on the above requirements, but
they don’t take both requirements into consideration at the same time. In the
Metadata Sharing component we address simultaneously both scalability and
semantic interoperability and set the following as our objective:

• utilize the P2P access structure as a decentralized and self-organizing
media to support higher-level semantic services

• eliminate all central components and concentrate rather on a bottom-up
decentralized process to enable sharing structured data. Users should
be able to provide pair wise schema translations and share these trans-
lations.

Deliverable D5.2 Version 1.0 2

NEPOMUK 17.12.2007

• devise techniques to discover translation paths in the graph of transla-
tions, to support query routing to other semantic domains by applying
available translations, but also to assess the semantic quality obtained
from these translations.

2.2 Metadata Recommendation

While content based recommendations of resources and recommendations of
simple data items have been investigated, functionalities such as recommen-
dations based on metadata and recommendation of people are still missing to
the Desktop user. In this section we first describe the scenarios from which
we extract the users’ requirements helping us in formalizing the objectives.
In the scenario Dirk: Deal with e-mails (see [38] section 3.2.2), “Dirk adjusts
his mailbox to focus on topics of his interest”. When Dirk enters the topics,
the tag recommender can help him by suggesting related tags. This way Dirk
can enrich his topic list to not miss mails he is interested in.
In another scenario, involving Dirk, Hans and Peter (see [38] section 3.2.2),
Dirk wants to make a paper accessible to other project partners because he
finds it relevant for their work. Hence, he makes it available and adds key-
words to it. While he enters the keywords, the annotation tool asks the Meta-
data Recommender for tags related to the keywords Dirk has already entered.
It shows those additional tags, such that Dirk can add them — either by click-
ing on them or by using the autocompletion feature. While Dirk has already
entered the tag “Graph Topology”, the Metadata Recommender returned (be-
sides other tags) also the tag “Self Organizing Network”, which Dirk decides
to add to the paper. Since Hans has subscribed to the tag “Self Organizing
Network”, he is notified that the paper is available now. Hans retrieves the pa-
per and also the annotations of it. Since he is not satisfied with the available
metadata for this resource, he would like to extend it. Therefore, he queries
the network for similar metadata descriptions of resources and receives back
a list of metadata descriptions. He selects some of the entries and adds them
to the annotations of the considered paper updating his annotation of it.
The scenario Claudia: Writes Deliverable (see [38] section 3.2.3) describes
that “. . . all data, figures and documents are accessible and Claudia can easily
have a deeper look into them.”. Claudia searches her community by selecting
the previous deliverable report for the project. After Claudia selected it, the
system asks other users in her community (e.g. Dirk, who also works in the
same project) for documents having similar metadata descriptions. The peers
in his community, including Dirk, send then the shared metadata descriptions
of the documents having similar annotations back to Claudia. Claudia can
then request directly the documents she is interested in from the owner of the
document in order to compile the deliverable.
In the SAP scenarios, Ambrosia is mostly working with coordination of the
acquisition process for projects. For this, she needs to “find the right person
for the right task” (see [38] Section 3.2.5).
We can conclude from those scenarios that there is a need for recommen-
dations in several situations when working on and with the social semantic
desktop. A user annotating or searching for a resource will certainly appreci-
ate metadata suggestions. This speeds up the annotation process and allows
for more efficient retrieval. Hence, we need a component which recommends
metadata for given resources of a user. On the other hand, recommenda-
tions can help the user to find new resources she might find interesting, as
described in the “Claudia: Writes Deliverable” scenario. This can be accom-
plished by a recommender system which on request or automatically recom-
mends those resources to the user while she is looking for interesting and
useful resources. Also recommendations of people who are experts on certain

Deliverable D5.2 Version 1.0 3

NEPOMUK 17.12.2007

topics would be useful for Ambrosia.
Therefore, recommender components on the social semantic desktop need to
address the following types of recommendations:

1. informational resources,

2. tags, and

3. people.

These tools will thus allow both metadata exchange between community mem-
bers and recommendations based on the items shared by other similar users.

Deliverable D5.2 Version 1.0 4

NEPOMUK 17.12.2007

3 State of the Art

This section presents the state of the art in research regarding topics which
are affected by the algorithms developed in WP5000 and delivered in D5.2.
First, we present an analysis of what has been done in the area of Peer Data
Management Systems, then we proceed with analysis of what has been done
in the field of metadata recommendation and people recommendation. We
conclude with an overview on publications relevant to the recommendation of
tags.

3.1 Metadata Management and Sharing

There is a long tradition in data integration of pursuing the design of systems
and methods that allow transparent access to disparate and heterogeneous
systems through a single interface. Federated Databases were developed
towards that goal. They allow the retrieval of data from multiple noncon-
tiguous databases with a single query, even when the constituent databases
are heterogeneous. Thus, federated databases provide solutions to integrate
data coming from heterogeneous databases interconnected via a computer
network. They come in different flavors (see Sheth and Larson [67] for a tax-
onomy) but often revolve around a central mediator [69] component, storing
a global schema. The mediator is responsible for reformulating the query in
terms of all the other schemas used by the individual databases.
With the explosion and decentralization of information production, however, it
rapidly became clear that this centralized approach – requiring the definition
of a central, global schema – could not be enforced in the large. The way Grid-
Vine semantically gossips the queries from one schema to the other is typical
of a new generation of data integration systems called Peer Data Management
Systems (PDMSs). PDMSs emerged as an attempt to decentralize the media-
tor architecture and allow the systems to scale gracefully with the number of
heterogeneous sources. They do not require the definition of a global schema
as they consider loosely-structured networks of mappings between pairs of
schemas to iteratively disseminate a query from one database to all the other
related databases.
Research on PDMSs is developing in several compelling directions. The com-
plexity of iteratively reformulating queries to reach distant and heterogeneous
databases in a PDMS is studied in the context of the Piazza [40] project. Hype-
rion [7] is a system inspired by the Local Relational Model [15] mapping data
at both the instance and schema levels to enable global search capabilities
in decentralized environments. SomeWhere [4] is a PDMS offering reasoning
services through a distributed consequence finding algorithm. SQPeer [50]
proposes a publish-subscribe mechanism and several compile and run-time
optimization techniques to execute query plans in decentralized Semantic Web
environments.
Our own efforts in GridVine focus on scalability and efficiency through the
use of a structured overlay layer and on query diffusion based on probabilistic
analyses of the mappings to determine the correctness of the semantic routes
in the network [28].

3.2 Metadata(-based) Recommendation

In the past there has been no investigation on the possible algorithms for
recommending metadata in a social infrastructure. However, some relevant
work can be found in other related areas, such as that e.g. of meta-search
engines. An overview of them can be found in [61]. General ranking in social

Deliverable D5.2 Version 1.0 5

NEPOMUK 17.12.2007

networks has been investigated e.g. in [37]. The area of recommendations
for music in platforms like e.g. iTunes 5 or for diverse resources as books,
DVDs and CDs at Amazon 6 bases the decisions on analyzing user behavior
(e.g. past visited or bought items). This is a different scenario as the one
we consider in this deliverable, since we consider the metadata annotations of
the resources to compute similarity and thus deciding about the resources to
recommend.
Several techniques applied in different fields can be reused and adapted to
the recommendation scenario based on similarities of metadata descriptions
considered in this work. For example, many algorithms have been developed
in the field of databases for data cleaning and integration. This techniques aim
at detecting that two different records represent the same real world thing,
by analyzing their attributes or they schemas. Many of them are based on
costly text similarity techniques in combination with strategies to lower the
required number of comparisons. Several approaches exist and they are dif-
ferent approaches, going for lower processing times or better matching quality
as can be seen for example in [5, 39, 20]. Similarly, also the information about
the relations between documents and the resulting graph structure has been
employed to match data from different sources [46, 48].
Much of the described work use a text similarity function as one evidence for
matchings. In [23], the authors show that a Soft TFxIDF similarity function
based on the Jaro-Winkler text similarity measure is the most appropriate for
this type of matching. This is one of the approaches we build upon for the
first recommendation prototype.
In Section 6 we will present the details of the specific scenario we consider
and explain the approach we follow.

3.3 Recommendation of People

In this section we briefly describe already existing approaches for finding a
ranked list of persons that are experts on a requested topic. The topic of
recommending human experts on a given topic is a relatively new one, some
first interesting Expert Search (ES) systems have been proposed in the last
years and some initiatives have been started [74]. These systems use differ-
ent information sources and features such as social network information [17],
co-occurrences of terms and changes in the competencies of people over time
[76], rule-based models and FOAF7 data [53]. For the web, a different con-
text from the enterprise search one, one of the approaches proposed in [72]
focuses on scenarios like Java Online Communities where experts help new-
comers or collaborate with each other, and investigated several algorithms
that build on answer-reply interaction patterns, using PageRank and HITS au-
thority models as well as additional algorithms exploiting link information in
this context.
Most similar system to our approach is the Enterprise PeopleFinder [59, 60]
also known as P@noptic Expert [26]. It first builds a candidate profile at-
taching all documents related to that candidate in one big document giving
different weights to the documents based on their type. The system uses
the document terms as topics of expertise and candidate name matching (i.e.
whether a name appears into the document or not) for connecting documents
and experts. Relationships between candidates and documents are binary, a
given document is either related to a candidate or not.
A interesting distinction has been made between expert finding and expert
profiling in [11]. The former approach aims at first retrieving the documents
relevant to the query and then extract the experts from them. The latter
approach builds a profile for each candidate and then matches the query with
5 http://www.apple.com/itunes/ 6 http://www.amazon.com/
7 http://www.foaf-project.org/

Deliverable D5.2 Version 1.0 6

http://www.apple.com/itunes/
http://www.amazon.com/
http://www.foaf-project.org/

NEPOMUK 17.12.2007

the profiles without considering the documents anymore [12]. Our model
merges these two approaches: it builds a weighted profile for each candidate
and keeps in the model all the documents without losing information.
All systems mentioned up to now use different ad-hoc techniques but do not
formally define a retrieval model for experts. Some first steps in this direction
have been made: probabilistic models [36] and language models [8, 9, 10]
have been proposed. Our work continues this line of work, and shows how to
model expert search based on a vector space based model. The advantage
of building on this model is that, as we will show here, we can easily include
existing VSM based refinements and solutions to improve expert search, and
to query both for documents and candidates in a uniform way.
Another model for ES proposed in [56, 57] views expert search as a voting
problem. The documents associated to a candidate are viewed as votes for
this candidate’s expertise also including relevance feedback techniques. Again,
the relationships between candidates and documents are only binary and not
continuous.
An important step in expert search is to extract the names of the candidates
from the documents in the collection and match them with the list of the given
candidates (e.g. the list of employees in a company). Possible solutions to the
problem of measuring similarity between two named entities are presented
in [22]. How to pre-process a document collection in order to extract names
from documents such as email has been proposed in [18].

3.4 Recommendation of Tags

General overviews on the rather young area of folksonomy systems and their
strengths and weaknesses are given in [42, 55, 58]. In [62], Mika defines a
model of semantic-social networks for extracting lightweight ontologies from
del.icio.us. Recently, work on more specialized topics such as structure mining
on folksonomies—e. g. to visualize trends [34] and patterns [65] in users’
tagging behavior—as well as ranking of folksonomy contents [44], analyzing
the semiotic dynamics of the tagging vocabulary [19], or the dynamics and
semantics [41] have been presented.
The literature concerning the problem of tag recommendations in folksono-
mies is still sparse. The existent approaches usually lay in the collaborative
filtering and information retrieval areas. AutoTag [63], e.g., is a tool that
suggests tags for weblog posts using information retrieval techniques. Xu et
al. [71] introduce a collaborative tag suggestion approach based on the HITS
algorithm [49]. A quality measure for tags, derived from collective user au-
thorities, is iteratively adjusted by a reward-penalty algorithm. Benz et al. [14]
introduce a collaborative approach for bookmark classification based on a com-
bination of nearest-neighbor-classifiers. There, a keyword recommender plays
the role of a collaborative tag recommender, but it is just a component of the
overall algorithm, and therefore there is no information about its individual
effectiveness. The standard tag recommenders, in practice, are services that
provide the most-popular tags used for a particular resource. This is usually
done by means of tag clouds where the most frequent used tags are depicted
in a larger font or otherwise emphasized.
The approaches described above address important aspects of the problem,
but they still diverge on the notion of tag relevance and evaluation protocols
used. Xu et al. [71], e.g., present no quantitative evaluation, while in [63],
the notion of tag relevance is not entirely defined by the users but partially by
experts.
In this deliverable we will describe the technique we implemented to recom-
mend tags to users of Nepomuk (cf. Section 6.5) and will compare it with
state-of-the-art recommender systems. We will focus on a quantitative evalu-

Deliverable D5.2 Version 1.0 7

NEPOMUK 17.12.2007

ation which shows that our approach can outperform common recommenda-
tion algorithms and therefore is a good candidate for recommending tags in
Nepomuk.

Deliverable D5.2 Version 1.0 8

NEPOMUK 17.12.2007

4 Metadata Sharing and Recommendation Architecture

The knowledge exchange and the social aspects of Nepomuk are mainly exam-
ined by WP5000. With the Deliverable 5.2 following the Deliverable 5.1 [32],
we provide the next steps towards the social services of Nepomuk. In this sec-
tion we present first the general architecture and interactions of the WP5000
components and then we present in detail the architecture of each component
delivered in D5.2.
In Figure 1 the interaction between WP5000 components is presented. As de-
scribed in the legend, a straight line connecting two components shows that
our two components exchange data in order to interoperate: it is a necessary
condition for them to work; while the dotted line shows optional exchange,
for example, the Metadata Recommender might receive information from the
Social Ranker. The inner box depicts the components delivered with D5.1 (i.e.,
the Community Manager and the Metadata Aligner). The D5.2 box shows the
status of WP5000 components in this deliverable, and how these components
interact with other semantic desktops using the distributed search infrastruc-
ture provided in WP4000. The Social Ranker component will be the focus of
WP5000 in the future. It will receive input from the Community Manager to
generate community-specific rankings. As seen in the diagram, there exists
also an optional connection to the Metadata Recommender. The ranker can
profit from recommendations made to enhance metadata as well es from rec-
ommendations for query extension. The Messaging infrastructure is delivered
by WP6000 in D6.2.

Figure 1: Interaction of components from WP5000 and their affiliation to the
deliverables

4.1 Metadata Sharing

The Metadata Sharing component is responsible for enabling global search
over all the data which users wish to share and for fostering semantic interop-
erability. In this section we give an overview of the methods this component

Deliverable D5.2 Version 1.0 9

NEPOMUK 17.12.2007

provides, its integration into the Nepomuk architecture and its relation to other
Nepomuk components.

4.1.1 Service Description

The MetadataSharing component, provides a service for inserting, deleting
and searching metadata in RDF format. This data can represent either an RDF
instance, an RDFS schema or a simple OWL mapping relating semantically sim-
ilar classes and properties from two different schemas using owl:equivalentClass
and owl:equivalentProperty properties. The three main services of this com-
ponent can be summarized as follows:

• insert: this is the method used for inserting triples in the system to be
shared among all users

• delete: this is the method for deleting an existing triple from the system

• search: this is the main service provided by the metadata sharing com-
ponent performing a search among all shared triples. It takes a search
criteria (at least one part of the triple (subject, predicate, object)), and
uses the underlying overlay network and the fact that each triple is in-
dexed three times to retrieve all data triples corresponding to this crite-
ria.

The WSDL file describing the functionality of the Metadata Sharing component
is available in the Nepomuk SVN Server in the directory /repos/trunk/java/
org.semanticdesktop.nepomuk.services.metadatasharing

4.1.2 Architecture of Metadata Sharing

The Metadata Sharing component is a semantic overlay built over a distributed
hash table (DHT), enabling global search. In the semantic overlay RDF, RDFS
and OWL managers are modules responsible for inserting and deleting RDF
instances, schemas, and mapping between those schemas. These modules
access the insert handler of the responsible peer for those data through the
DHT. The data is then indexed and stored in the DHT Local store of that peer,
enabling global search over this data. Since we are using a light version of
P-Grid as our underlying DHT, which does not provide storage functionalities,
the network database is also managed by the Metadata Sharing component. A
query (atomic or conjunctive) is directed to the search manager module which
accesses the query handler of the peer responsible for the data queried for,
again through the DHT. The query handler accesses the network database to
retrieve data. The queries can be propagated using the mappings indexed in
the network database so that relevant data annotated according to a different
schema can also be retrieved. A simple view of the Metadata Sharing compo-
nents is shown in Figure 2. In this figure, the solid lines show local accesses
to different modules of the Metadata Sharing component, while dashed lines
show accesses which are directed by the DHT to the corresponding module of
the responsible peer.
In Nepomuk, tasks are distributed among components and our Metadata Shar-Relation to other

components ing components is dependent on some services provided by other compo-
nents, while it provides services to some other ones. Here we describe the
Metadata Sharing component’s relation to other Nepomuk components.
The RDF repository is responsible for storing local RDF data. If the user wantsRDF Repository
to share its data globally and enable global search over this data, it can insert
those data to the Metadata Sharing component. So the Metadata Sharing

Deliverable D5.2 Version 1.0 10

NEPOMUK 17.12.2007

Figure 2: Architecture of Metadata Sharing component- solid lines show local
accesses, dashed lines show accesses which are directed by the DHT to a
module.

component can get the local data which each user wishes to share, from the
RDF Repository.
The Nepomuk middleware manages the registration and calling of all servicesMiddleware
provided in Nepomuk. The metadata sharing component registers itself to the
middleware at startup enabling other components to find and use it. Upon
a request to the RDF Repository, an implementation of this service will be
provided by the middleware.
To foster semantic interoperability and provide global search, the MetadataMetadata Alignment
Sharing components may need to have some mappings between schemas in-
serted to it. It can use the functionality of the Metadata Alignment component
to ask for a mapping to be created between two specific RDF schemas.
The Metadata Sharing component builds over a light version of P-Grid, theDistributed Index
distributed index component, as its underlying DHT.
Components like the Community Manager or Metadata Recommender, whichComponents which need

data shared by users need data as input for analyzing it, can use the service provided by the Meta-
data Sharing component to do global search for data.

4.2 Metadata Recommendation Architecture

The Metadata Recommendation components are responsible for providing rec-
ommendation functionalities to the Nepomuk user. All these are based on the
metadata generated by other components in the semantic desktop and stored
in the local RDF repository or via the Metadata Sharing component described
in this deliverable. The services which provide recommendations are:

• Metadata based Recommendation of Files

• Metadata Enrichment

• Recommendation of Persons

• Recommendation of Tags

In this section we give an overview of the methods these components provide,
their integration into the Nepomuk architecture, and their relation to other
Nepomuk components.

Deliverable D5.2 Version 1.0 11

NEPOMUK 17.12.2007

Figure 3: Architecture of Metadata Recommendation components

The first two services provided are the Metadata based Recommendation of
Files and the Metadata Enrichment. From the architectural point of view these
two services are highly correlated and, thus, are represented in Figure 3 as
a single box (i.e., Metadata Recommendation & Enrichment). The goal of
this component is to provide the user with recommendation of new interest-
ing files and new interesting metadata for the resources already present on
the desktop. In order to do so, the component needs to communicate both
with the local RDF repository and with remote peers in the community via the
communication infrastructure (i.e., it is using the messaging service to com-
municate with peers). The community in which to search for metadata can
be provided as a list of users by the Community Manager component (see
Deliverable 5.1 [32]).
The service of the Expert Recommendation aims at providing the user with
a list of experts (i.e., people) on a given topic. The experts are selected
among a list of persons referral to in the desktop. In order to do so, the
component (i.e., Expert Recommender in Figure 3) needs to extract, out of
the RDF Repository, some information about the content of documents and
emails and also a list of expert candidates. These functionalities are provided
to the Expert Recommender by the Local Search component which provides a
simplified access to the repository.
The Tag Recommendation service builts upon the FolkPeer of the Community
Manager component, introduced in Deliverable 5.1 [32]. We have extended
the FolkPeer to supply tag recommendations based on the analysis of the
folksonomy graph structure (cf. Section 6.5). Thus, FolkPeer now provides tag
recommendations which are made available to components via the Metadata
Recommender component introduced in this deliverable.

4.2.1 Service Description

The services provided by the Metadata Recommendation & Enrichment are
exposed in the corresponding interface. The available methods in this API
are:

Deliverable D5.2 Version 1.0 12

NEPOMUK 17.12.2007

• recommendSimilarMetadataOfResource(resourceUri)

• recommendAdditionalMetadata(resourceUri)

• recommendTags(resourceUri)

• recommendTags(tag)

The client applications request the recommendation of additional metadata
(i.e., Metadata Enrichment) or the recommendation of similar resources (i.e.,
Metadata based Recommendation of Files) by providing the URI of a resource.
This URI is used for retrieving the metadata of the resource from the local
repository, and this metadata is used for the computation of the recommen-
dations. Similiarly, tag recommendations can be retrieved for resources by
providing the resource URI to the tag recommender. It is also possible to ask
the tag recommender for related tags for a given tag by giving this tag to the
recommendTags method instead of a URI.
The service provided by the Expert Recommender component can be accessed
with three different inputs. The interface of this component contains three
methods which are:

• findPeople(text)

• findSimilarPeople(personUri)

• findPeopleFromDocument(documentUri)

The resources (i.e., persons) retrieved by this functionality (i.e., Recommen-
dation of Persons) are presented to the client application as a ranked list of
results which are described by an URI. The different ways in which is possible
to tailor the recommendations are some input text, or another person, or the
content of a document.

4.2.2 Relations to other components

In Nepomuk, tasks are distributed among components and our Metadata Rec-
ommendation components depend on services provided by other components,
while it provides services to some other ones. Here we describe the Metadata
Recommendation components’ relation to other Nepomuk components.
The RDF repository is responsible for storing local RDF data. All the recom-RDF Repository
mendations provided by the Metadata Recommendation components are built
based on the content of the RDF Repository. Also in the scenario of metadata
enrichment, the final recommendations are originally coming from the RDF
Repository of remote peers.
The Nepomuk middleware manages the registration and calling of all servicesMiddleware
provided in Nepomuk. The metadata sharing components register themselves
to the middleware at startup enabling other components to find and use them.
The Metadata Recommendation & Enrichment component uses the P-GridDistributed Index
functionalities in order to communicate with remote peers from which to get
metadata for recommendations.
In order to gather data as input for analyzing it, the Metadata RecommenderMetadata Sharing
uses the service provided by the Metadata Sharing component to do global
search of data.
The Metadata Recommender uses the FolkPeer included in the CommunityCommunity Manager
Manager component (cf. Deliverable 5.1 [32]) to gather information from
the network of peers and to calculate tag recommendations on the metadata
graph built on the FolkPeer.
Other than general Nepomuk end-user client applications, several componentsComponents using the

recommendations

Deliverable D5.2 Version 1.0 13

NEPOMUK 17.12.2007

are candidates for including recommendations generated by the Metadata Rec-
ommender: for example the Kaukolu Wiki (i.e., a semantic wiki with semi-auto-
matic metadata creation, see [51] Section 3.3), when navigating wiki pages,
can recommend tags or additional metadata for a page; the Personal Task
Manager (the first prototype will be delivered in “D3.2 First Task Management
Prototype”), when the user looks for appropriate tags to add to a task, or
when she looks for experts to invite for a meeting, can use the recommenda-
tion components to provide appropriate recommendations.

Deliverable D5.2 Version 1.0 14

NEPOMUK 17.12.2007

5 Metadata Sharing

5.1 Overview

GridVine [2] is a semantic overlay infrastructure based on a peer-to-peer ac-
cess structure. Built following the principle of data independence, it separates
a logical layer – where data, schemas and schema mappings are managed
– from a physical layer consisting of a structured peer-to-peer network sup-
porting decentralized indexing, key load-balancing and efficient routing. Our
system is totally decentralized, yet it fosters semantic interoperability through
pair-wise schema mappings and query reformulation. In GridVine, heteroge-
neous but semantically related information sources can all be queried trans-
parently using iterative query reformulation. We discuss a reference imple-
mentation of the system and several mechanisms for resolving queries in a
collaborative fashion. Promoting both scalability and interoperability, GridVine
provides a complete solution for building higher-layer distributed knowledge
management applications.
In the following, we describe GridVine, the first system addressing simulta-
neously both scalability and semantic heterogeneity. Built following the Peer-
to-Peer (P2P) paradigm, it eliminates all central components and concentrates
rather on bottom-up and decentralized processes. Instead of requesting ser-
vices from centralized servers, the participating Nepomuk desktops collabora-
tively contribute resources to support higher-level semantic applications. This
ensures graceful scalability, as new clients entering into the system can in turn
provide resources and act as servers intermittently to support shared services.
The self-organizing and decentralized P2P access structure supports several
higher-level semantic services: (i) distributed search, (ii) persistent storage,
(iii) and semantic integration. The higher-level services recursively use the
underlying P2P access structure to locate relevant information and distribute
the load of the machines in a dynamic way.
A general overview of our infrastructure is given below, with details on both
the P2P access structure used for indexing information and routing messages
and the higher semantic layer responsible for managing structured content.
Integration of data being central to our approach, we also detail decentralized
information integration based on pair-wise schema mappings between het-
erogeneous but semantically related schemas. We discuss distributed query
resolution mechanisms and illustrate the performance of our infrastructure
deployed in situ on several hundreds of machines scattered around the world.
A first prototype of GridVine had been initially designed for the research pur-
poses of LSIR/EPFL. Nevertheless, this was only a very preliminary version
with several functional limitations and incompatible with the advancements
and the identified requirements in Nepomuk. During this work, we have ad-
dressed many of the initial shortcomings and integrated the latest system with
the components developed in WP4000 and WP5000. In the following section,
we describe the latest state of the GridVine architecture.

5.2 GridVine: A Three-Tier Semantic Overlay Network

A key aspect of our approach is to apply the principle of data independence by
separating a logical from a physical layer. This principle is well-known from the
database area and has largely contributed to the success of modern database
systems, by opening the door to optimization of logical higher-level primitives
at the physical layer. In the present case, we generalize Codd’s notion of
data independence to networked environments beyond storage systems by
separating a logical semantic layer – responsible for structured data storage,
integration and query resolution – from a self-organizing P2P infrastructure –

Deliverable D5.2 Version 1.0 15

NEPOMUK 17.12.2007

liable for indexing, load-balancing and efficient routing.
Figure 4 gives a conceptual overview of our architecture. The base layer, called
Internet Layer in the figure, represents the various machines connected to the
Internet (Nepomuk desktops) and sharing structured information through our
infrastructure. These machines self-organize into a structured P2P overlay
layer for efficient routing of messages and index load-balancing. We use
P-Grid (more information in deliverables D4.1 [30], D4.2 [29] and a short
summary in the following section) to arrange the Nepomuk desktops into a
virtual binary search tree at the overlay layer. Finally, the semantic mediation
layer sits on top of this architecture and takes advantage of the overlay layer
to efficiently share and integrate structured information across the network.
Structured information (data, schemas, mappings) is managed and stored
through a database at the semantic mediation layer, but indexed and load-bal-
anced by the overlay layer. Distinguishing the semantic mediation layer from
the overlay layers allows us to offer higher level primitives at the uppermost
layer, while benefiting from an efficient, decentralized and load-balanced ac-
cess structure maintained by the P2P overlay. Note that the three layers are
uncorrelated: the organization of the machines at the Internet layer is inde-
pendent of the organization of the Nepomuk desktops (peers) at the overlay
layer, which is itself dissociated from the structure of the information at the se-
mantic layer. We describe both the overlay and the semantic mediation layer
in more detail in the following.

IP Network

subnet
Internet
Layer

Structured
Overlay
Layer

Semantic
Mediation

Layer

127.143

127.144

127.145

34.109 35.142 38.143
45.123

109.144

112.144
117.122

125.98

0001

0100

0011
0010

0101

0101

0110

0111

Schema A Schema C

Schema D

Schema H

Schema Z

mapping

Update(key, value)
Retrieve(key)

Update(data)
SearchFor(query)

Update(schema)
Update(mapping)

Figure 4: The GridVine Semantic Overlay Network: in our architecture, the
semantic mediation layer is indexed using a P2P overlay layer, which is itself
built on top of the Internet layer.

Deliverable D5.2 Version 1.0 16

NEPOMUK 17.12.2007

5.2.1 Organizing Peers and Load-Balancing the Index at the Overlay Layer

GridVine takes advantage of the P-Grid P2P access structure8 at the intermedi-
ate overlay layer. P-Grid is a self-organizing and distributed access structure,
which associates logical peers representing Nepomuk desktops in the network
with keys from a key space representing the underlying data structure. Each
peer is responsible for some part of the overall key space and maintains ad-
ditional routing information to forward queries to neighbouring peers. As the
number of machines taking part in the network and the amount of shared in-
formation evolves, P-Grid peers opportunistically organize their routing tables
according to a dynamic and distributed binary search tree.
Each Nepomuk desktop (peer) p ∈ P is associated with a leaf of the binary
tree. Each leaf corresponds to a binary string π ∈ Π. Thus, each peer p
is associated with a path π(p). For each level of the tree, each peer stores
references to some other peers that do not pertain to the peer’s subtree at that
level, which enables the implementation of prefix routing for efficient search.
The data items that are shared in the system are all indexed by keys. The key
key(d) of a data item d is generated using an order-preserving hash function
Hash(). Each peer is responsible for storing the keys falling under its current
key space key ∈ π(p). The partition of the key space is load-balanced [3]
in such a way that all peers are responsible for the same amount of data,
irrespective of the actual distribution of the keys. In addition, peers also
maintain references σ(p) to peers having the same path, i.e., their replicas
that duplicate their content, to ensure persistence of storage and resilience to
network churn.
P-Grid supports two basic operations: Retrieve(key) for searching for a cer-
tain key and retrieving the associated data value and Update(key, value) for
inserting, updating or deleting keys. Different values can be associated with
the keys depending on the application. In the context of GridVine, key values
either point to unstructured content (e.g., images) managed by the overlay
layer, or to structured data managed by a database at the semantic layer.
Since P-Grid uses a binary tree, Retrieve(key) is intuitively efficient, i.e.,
O(log(|Π|)), measured in terms of number of messages required to resolve
a search request in a balanced tree. For skewed distributions, it has been
shown [1] that due to the probabilistic nature of the P-Grid approach, the
expected search cost remains logarithmic, independently of how the P-Grid
is structured. As a result, P-Grid can be seen as a persistent and load-bal-
anced index layer, which supports efficient key look-ups in a totally decentral-
ized manner. For further information on P-Grid, please refer to D4.1 [30],
D4.2 [29].

5.2.2 Sharing Information at the Semantic Mediation Layer

GridVine takes advantage of the efficient and distributed index structure main-
tained at the overlay layer to globally manage semantic information at the
semantic mediation layer. We support various operations to maintain the
semantic layer, including instance, schema and schema mapping insertion.
Capitalizing on the popularity of Semantic Web standards, we provide those
mechanisms within the standard syntactic framework of RDFS and OWL. This
requires mapping semantic data and operations to the two operations provided
at the overlay layer, and hence mapping semantic information to routable keys.
RDF stores information as triples t representing various statements; triples
always take the following form:

ti = {tsubject, tpredicate, tobject}
where tsubject(the subject) is the resource about which the statement is made,
8 http://www.p-grid.org/

Deliverable D5.2 Version 1.0 17

http://www.p-grid.org/

NEPOMUK 17.12.2007

tpredicate (the predicate) represents a specific property in the statement and
tobject (the object) is the value (resource or literal) of the predicate in the
statement. All resources in our system are identifiable through Uniform Re-
source Identifiers (URIs), which are created on-the-fly upon insertion when
missing. A structured overlay network allows to implement application-spe-
cific addressing spaces. In our case, we introduce the specific URI schemes
pgrid: for elements managed by the overlay layer (index keys, unstructured
content), and pgrids: for structured elements managed by the semantic layer
(instances, schemas, schema mappings). This does not exclude the use of
other URI schemes in conjunction with P-Grid’s specific ones.
We map each triple at the semantic layer to routable keys at the overlay layer
in order to enable efficient and load-balanced indexing of information. The
granularity of the index as well as the exact mechanism used for mapping
information at the semantic layer to keys at the overlay layer are naturally
of utmost importance since they both directly influence the query processing
capabilities of the overall system. We want to support searches on individual
statements and thus have to index each triple separately. As most RDF query
languages are based on constraint searches on the triples’ subject, predicate
or object, we have to reference each individual triple three times, generating
separate keys based on their subject, predicate and object values. Thus, the
insertion of each triple t is performed as follows:

Update(t) ≡ Update(Hash(tsubject), t),

Update(Hash(tpredicate), t), Update(Hash(tobject), t).

In that way, each triple is associated to three keys at the overlay layer. Up-
date and delete operations can be implemented using the same mechanism,
which explains the generic name (Update) we give to this primitive. Each peer
p maintains a local database DBp at the semantic layer to store the triples
whose keys fall under its key space. Since RDFS statements can be written
as ternary relations, the physical schemas of the local databases can all be
identical and consist of three attributes SDB = (subject, predicate, object).
The local databases support three standard relational algebra operators: pro-
jection π, selection σ and (self) join ./.
GridVine also supports the sharing of schemas defining classes of resources
and their related properties. Each schema is associated with a unique key and
indexed in an atomic operation:

Update(RDF_Schema) ≡
Update(π(p) : Hash(Schema_Name), Schema_Definition).

where the logical address π(p) of the Nepomuk desktop p posting the schema
is concatenated to a hash of the schema name to create a unique key for the
schema whenever necessary. As class and property definitions can also be
written as triples in RDFS, we use the same database to store both triples and
schemas.

5.3 Integrating Data at the Semantic Mediation Layer

GridVine’s semantic layer allows peers to efficiently share knowledge in a
global manner. Nepomuk desktops can query for any information at the se-
mantic layer by issuing series of Retrieve(key) operations on the correspond-
ing keys at the overlay layer (see Section 5.4). Sharing information syntac-
tically aligned as RDF triples in the network does not however ensure global
interoperability. On the contrary, GridVine being a totally decentralized system,
any peer in the network is free to come up with new schemas to structure its
own information.

Deliverable D5.2 Version 1.0 18

NEPOMUK 17.12.2007

Foundation
of

Databases

Foundation
of

Databases

...

<rdfs:Class rdf:ID="Book">
 <rdfs:subClassOf rdf:resource="#EPFLResource"/>
</rdfs:Class>
<rdfs:Property rdf:ID="Title">
 <rdfs:domain rdf:resource="#EPFLResource"/>
...
EPFL Schema

...

<rdf:Description rdf:about="pgrids://0100.EPFL#Book">
 <owl:equivalentClass rdf:ID="map1" rdf:resource="DC:Text"/>
</rdf:Description>
<rdf:Description rdf:about="#map1">
 <pgrids://map/CycleAnalysis> 0.8 </pgrids://map/CycleAnalysis>
...

Schema Mapping (EPFL -> DC)P-Grid

Reformulated Query (DC Schema)
SELECT ?book
WHERE (?book <rdf:type> <DC:Text>)
 (?book <DC:title> ?title
AND ?Title =~ /Databases/

pgrid://110011 Annotations

...

<rdf:Description rdf:about="pgrid://110011">
 <rdf:type rdf:resource="DC:Text"/>
 <DC:Title> Foundations of Databases </DC:Title>
...

1

Query (EPFL Schema)
SELECT ?book
WHERE (?book <rdf:type> <EPFL:Book>)
 (?book <EPFL:Title> ?title
AND ?Title =~ /Databases/

2

pgrid://110011

34

Figure 5: A simple example of query reformulation using a schema mapping.

To integrate all semantically related but syntactically heterogeneous informa-
tion shared by the Nepomuk desktops, GridVine supports the definition of
pair-wise schema mappings. A mapping allows the reformulation of a query
posed against a given schema into a new query posed against a semantically
similar schema. By iterating this process over several mappings, a query can
traverse a sequence of schemas at the mediation layer and retrieve all relevant
results, irrespective of their schemas. Given the provision of a sufficient num-
ber of mappings, GridVine fosters in that way global semantic interoperability
in a totally decentralized fashion.
We encode schema mappings using simple OWL statements relating se-
mantically similar classes and properties from two different schemas using
owl:equivalentClass and owl:equivalentProperty properties. Schema mappings
are indexed at the key space corresponding to the source schema at the over-
lay layer – or at the key spaces corresponding to both schemas if the mapping
is bidirectional:

Update(Schema_Mapping) ≡
Update(Source_Schema_key, Schema_Mapping).

Figure 5 shows a simplified example of query reformulation in GridVine; a
peer issues a query to retrieve a book annotated with a given schema (EPFL
schema) (1), reformulates the query thanks to a schema mapping (2), finds a
relevant resource annotated with the second schema (3), and finally retrieves
the relevant resource by querying the structured overlay layer (4).

5.4 Resolving Queries in GridVine

Indexing each triple based on three keys at the overlay layer enables us to re-
solve complex higher-level queries at the semantic layer. A triple pattern [66]
is an expression of the form (s, p, o) where s and p are URIs or variables, and
o is a URI, a literal or a variable. The simplest semantic queries supported by
GridVine retrieve information based on a single triple pattern:

SearchFor(x? : (s, p, o)),

where x?, the distinguished variable the query has to return, also appears in
the triple pattern (s, p, o). For instance, the following triple pattern query:

SearchFor(x2? : (x1?, pgrids : //0100 : EPFL#Title, x2?))

Deliverable D5.2 Version 1.0 19

NEPOMUK 17.12.2007

retrieves the Title of all the images annotated with the pgrids : //0100 :
EPFL schema. We call such a query an atomic query since it only contains
one triple pattern. In GridVine, atomic queries are resolved by first locating
relevant peers thanks to the index provided at the overlay layer, and then by
processing structured data handled at those peers at the semantic layer. A
peer issuing an atomic query q first has to determine the key space key where
it can find the answers. This can be determined by taking a hash of one of
the constant terms const in the triple pattern:

key = Hash(const).

In our example, key = Hash(pgrids : //0100 : EPFL#Title). When two con-
stant terms appear in the triple pattern, both can be used to retrieve the re-
sults. Once the key space is discovered, the peer simply forwards the query to
the peer(s) responsible for that space using Retrieve(key, q). As all triples are
indexed on their subject, predicate and object in GridVine, the query can be
directly answered by the peer(s) responsible for this key space, which stores
the corresponding triples in its database. Thus, atomic query resolution boils
down to a standard P-Grid look-up generating O(log(|Π|)) messages. Once
arrived at its final destination(s) key, the query is resolved with a local rela-
tional query on the local database DBdest. Defining pos(term) as the position
of a term (variable or constant) in a triple pattern, i.e., pos(term) either takes
subject, predicate or object as value, the set of results Results is obtained as
follows:

Results = πpos(x) σpos(const)=const (DBdest).

In our example, the query is forwarded to the peer(s) responsible for
Hash(pgrids : //0100 : EPFL#Title), which can retrieve the results by is-
suing a query πobject σpredicate=pgrids://0100:EPFL#Title on its local database.
Once retrieved by the destination peer(s), the results are sent back to the
original issuer of the query. Conjunctive and disjunctive queries can be re-
solved in a similar manner [2], by iteratively resolving each triple pattern
contained in the query and aggregating the sets of results through local join
operations [54]. Queries on value ranges are also supported, as they can be
natively processed by our overlay network.

5.4.1 Self-Organizing Mappings

GridVine’s mediation layer allows the peers to share structured data in a scal-
able manner. Sharing information syntactically aligned as triples does not
however ensure global interoperability. On the contrary, GridVine being a to-
tally decentralized system, any peer in the network is free to come up with
new schemas to structure its own data.
To integrate all semantically related but syntactically heterogeneous informa-
tion shared by the peers, GridVine supports the definition of pairwise schema
mappings. Mappings allow the reformulation of a query posed against a given
schema into a new query posed against a semantically similar schema. By
iterating this process over several mappings, a query can traverse a sequence
of schemas at the mediation layer and retrieve all relevant results, irrespective
of their schemas. Given the provision of a sufficient number of mappings,
GridVine fosters in that way global semantic interoperability in a totally decen-
tralized fashion.
GridVine allows for the definition of both equivalence and inclusion (subsump-
tion) GAV mappings. For the sake of this demonstration, mappings relate
semantically similar predicates defined in different schemas. Queries are then
reformulated by replacing the predicates with the definition of their equivalent
or subsumed predicates (view unfolding). Schema mappings are inserted at
the key space corresponding to the source schema at the overlay layer – or at

Deliverable D5.2 Version 1.0 20

NEPOMUK 17.12.2007

Figure 6: A simple example of query reformulation using a schema mapping.

the key spaces corresponding to both schemas if the mapping is bidirectional:

Update(Schema_Mapping) ≡
Update(Source_Schema_Key, Schema_Mapping).

Figure 6 shows a simple example of query reformulation.
GridVine offers several functionalities to organize the network of mappings at
the mediation layer in an automated way. The system ensures that the net-
work of schemas and mappings at the mediation layer is connected in order to
enforce global interoperability. It creates additional mappings whenever nec-
essary, tries to assess the quality of the mappings and discards the mappings
that are detected as being erroneous.

5.4.2 Connectivity at the Mediation Layer

GridVine maintains information about the graph of schemas and mappings.
Upon inserting a new schema, GridVine asks for the manual definition of
schema mappings between the new schema and some already inserted schemas.
The system then periodically ensures that the network of schemas and map-
pings forms a strongly connected graph, such that a query posed locally using
any schema can be disseminated globally to all related schemas using the
network of mappings.
Repeatedly crawling a decentralized and potentially large graph of schemas
connected by mappings would be costly in our setting. In GridVine, the peers
determine the degree of connectivity of the mediation layer from the degree
distribution of its schemas. Each peer storing a schema definition is responsi-
ble for updating the number of incoming and outgoing mappings attached to
its schema:

Update(Domain_Connectivity) ≡
Update(Hash(Domain), {Schema, InDegree,OutDegree})

where Domain is the name of the application domain related to the media-
tion layer. The peer p responsible for Hash(Domain) at the overlay layer can
then locally derive the degree distribution of the graph of schemas by aggre-
gating these numbers. It evaluates the connectivity of the mediation layer by
computing a connectivity indicator cidomain:

cidomain =
∑
j,k

(jk − k) pjk

where pjk stands for the probability of a schema to have in-degree j and
out-degree k. cidomain ≥ 0 indicates the emergence of a giant connected
component in the graph of schemas and mappings [27]. Thus, the mediation
layer is not strongly connected as long as cidomain < 0.

Deliverable D5.2 Version 1.0 21

NEPOMUK 17.12.2007

5.4.3 Creation & Deprecation of Mappings

Peers responsible for a schema periodically inquire about the connectivity of
the mediation layer by issuing a query to the corresponding key space. ci < 0
indicates that some of the schemas shared at the mediation layer cannot
always be accessed by following series of mappings. In that case, more map-
pings are needed to ensure global interoperability. This triggers the automatic
creation of additional schema mappings to reinforce the existing network. The
exact method used to choose the pair of schemas and to create the mapping
depends on the application domain.
The quality of the mappings created in this way is periodically assessed as the
networks of peers, schemas, and mappings evolve. GridVine uses a Bayesian
analysis comparing transitive closures of mappings to assess the quality of
the mappings [28]. The mappings manually created by the users are always
considered as correct in this analysis, while probabilistic correctness values are
inferred for mappings that were created automatically. A mapping detected as
incorrect is marked as deprecated in the system, and is from then on ignored,
both for the reformulation of the queries and for the connectivity analysis. The
deprecation of mappings fosters the creation of a new topology of mappings,
which will ensure the global interoperability of the system eventually.

5.4.4 Performance Evaluation

We carried out several large-scale experiments in various settings in order
to validate the design of our infrastructure. We detail two of these experi-
ments below. Figure 7 a) shows the distribution of query processing time in
several large-scale networks of 50 to 340 peers scattered around the world.
Each peer ran on a distinct machine on the PlanetLab network9. We inserted
between 4000 and 80000 triples (depending on the network size) in the sys-
tem and monitored the resolution of thousands of atomic queries issued by
all the peers over several hours. For the largest network consisting of 340
peers, 43% of the queries were answered within one second only, and 75%
within five seconds. Note that the machines used for the experiment were
heavily loaded due to the processes inherent to the PlanetLab infrastructure
and to several other experiments running concurrently. Despite the heavily
skewed distribution of the keys generated when indexing the triples, the par-
tition of the key space at the overlay layer, and thus the storage load at the
semantic layer, remained balanced thanks to P-Grid proactive load-balancing
mechanisms. Although several peers went offline during the test, all queries
were answered properly due to the dynamic index replication triggered at the
overlay layer.
Figure 7 b) illustrates a network-intensive deployment focusing on data inte-
gration. GridVine was this time deployed over 40 peers running on 20 cores in
a local-area cluster and interconnected through a realistic network setting10.
Each peer was setup to be responsible of a distinct schema. The schemas
were related through a random graph of schema mappings in order to cre-
ate a fully-connected semantic mediation layer. Several thousands of atomic
queries were issued in various points of this network, and then reformulated
in successive steps to be disseminated throughout the network. The figure
shows the successive reformulation steps, averaged over the various queries
and with confidence intervals set to 90% for up to 14 reformulations. Two
approaches were tested: in iterative gossiping, the peer issuing the original
query is responsible for retrieving all mappings and reformulating all queries by
itself iteratively. In recursive gossiping, the reformulation process is iteratively
delegated to those peers receiving reformulated queries. Recursive gossiping
9 http://www.planet-lab.org/ 10 ModelNet http://modelnet.ucsd.edu/ network based
on a client-stub topology, with 5ms delays and 200Kb/s links

Deliverable D5.2 Version 1.0 22

http://www.planet-lab.org/
http://modelnet.ucsd.edu/

NEPOMUK 17.12.2007

a) b)

Figure 7: Two deployments of GridVine illustrating a) the cumulative distri-
bution of query resolution time for networks ranging from 50 to 340 peers
distributed globally and b) the reformulation steps for up to 14 query reformu-
lations in a network 40 schemas stored on 40 different peers.

performs systematically better, as it distributes the reformulation load more
evenly among the peers.

Deliverable D5.2 Version 1.0 23

NEPOMUK 17.12.2007

6 Metadata Recommendation

6.1 Overview

In this section we describe our methods for providing the user with different
types of recommendations. Each of the following subsections present the de-
tails of the different recommendation types as presented in Section 2.2. We
provide (i) recommendations of files or resources and (ii) recommendations
for metadata enrichment based on the metadata of resources, (iii) recommen-
dations of persons based on the content of the desktop, and (iv) recommen-
dations of tags based on the folksonomy structure of the Nepomuk network
of peers. Metadata enrichment describes the process of suggesting metadata
extracted from resources to other resources which lack this metadata. In con-
trast, recommending tags provides user-generated annotations when the user
is in a situation where he wants to enter tags by himself, e.g., during tagging
a resource or when searching for a resource.

6.2 Metadata based Recommendation of Files

In this section we present the details of the metadata based recommendations
of files or resources. The functionality provided is based on the scenario
where the user wants to obtain, from the communities she belongs to, files
which have similarity in their metadata descriptions (see Section 2.2). For
this, she selects a local file which has a corresponding metadata description.
This metadata description is then used for finding files in her own and in other
desktops based on comparisons with their metadata descriptions.
Let us first introduce some general definitions used for the Recommendations
of Files and for the Metadata Enrichment recommendations which is presented
in Section 6.3:

• Pi is a peer in the community

• D is a document

• M is metadata expressed as an RDF graph

• pi is a certain property appearing in M

• m(D) := {M |M describes D}
is the metadata describing document D

• V D
p := {values of p|p ∈ m(D)}
is the set of values of a certain property in M

The Recommendation of Files based on their metadata requires a series of
steps and computations in order to find the expected resources. In the follow-
ing each of the steps involved in this process will be explained in detail:

1. Analysis of the metadata of the selected resource: After the user se-
lects a resource, its metadata is retrieved from the repository. Based
on the discriminativeness information of each property at this peer, the
properties are ranked and the top-K most discriminative properties with
their values are selected for the next step. The discriminativeness value
for each property is computed in regular intervals at each peer (each
peer has its own values), by considering the existing property types in
the metadata entries and the corresponding distribution of values. This
is: the more the values of a certain property vary, the more they can
be used for univocally identifying a resource; this is, the higher is the

Deliverable D5.2 Version 1.0 24

NEPOMUK 17.12.2007

discriminativeness of this property.

discrPi
(pj) :=

number of distinct values of pj

number of all values of pj
(1)

Note that the discriminativeness value of a property might be different in
each peer of the network and it represents the strength of a property for
identifying unequivocally a resource, for that specific user in that peer.

2. Query the Peers: A query is constructed with the top-K most discrimi-
native properties contained in the metadata description and the corre-
sponding values (a disjunction of property-values). The query is sent to
peers in the user’s community and also executed on the local storage
of the user issuing the query. Metadata descriptions having any prop-
erty-value matching with the query are retrieved for further processing.
Querying a peer in the community involves also to compute the overlap
of the query with each of the results at that peer (see next item).

3. Compute the Overlap: All results obtained from querying the local stor-
age and the peers in the user’s communities are analyzed. Each result
is compared with the top-K property-values of the metadata of the orig-
inally selected file for finding matchings of corresponding values. This
is performed using a string similarity function in order to allow partial
matches (like the ones presented in [23]). The similarity measures are
accumulated and normalized. After every property in the metadata result
has been compared, a metadata overlap measure is computed by taking
into account the discriminativeness of each matching property type, the
accumulated similarity value and the number of compared properties.
This is needed for considering the different annotation preferences of
different users at different peers. In this scenario, the overlap measure
computation procedure favors the resources that match better the prop-
erty-values in the query. Using the discriminativeness, the overlap for
the recommendation of resources can be defined as:

overlapr(m(D1),m(D2)) :=∑
p∈m(D2)

discrP2(p) · pvs(p, m(D1),m(D2))

|p ∈ m(D1) ∪ p ∈ m(D2)|
(2)

overlap_percentager(m(D1),m(D2)) :=∑
p∈m(D2)

discrP2(p) · pvs(p, m(D1),m(D2))

|p ∈ m(D1)|
(3)

where pvs is the property value similarity and it computes the similar-
ity between the metadata of two documents D1 and D2 according to a
given property p. This form of property similarity computation is used
in the scenario where the recommendation targets to find similar re-
sources. It is defined as

pvs(pi,m(D1),m(D2)) :=∑
vj∈V

D1
pi

max
vk∈V

D2
pi

({stringSim(vj , vk)})

max(
∣∣∣V D1

pi

∣∣∣ , ∣∣∣V D2
pi

∣∣∣) (4)

where stringSim is a given string similarity function (e.g. the Jaro-Win-
kler measure [24]).

Deliverable D5.2 Version 1.0 25

NEPOMUK 17.12.2007

4. Rank the Results: The results obtained are ranked accordingly to the
overlap measure. In addition to discarding results with very high over-
lap value, results with low overlap value are discarded as well. By doing
this the files that are likely to be the same or that are likely to be non-rel-
evant results are left aside. After this, the top-K most prominent results
(considering the overlap measure) are returned.

To perform this tasks, the Metadata Recommendation requires accessing other
Nepomuk components:

• The Community Manager needs to be accessed for finding the commu-
nities the user belongs to; and

• The RDFRepository at each peer in the community (which allows access)
has to be queried for similar metadata, and each peer needs to keep
statistics about this metadata e.g. the discriminativeness of properties.

The interactions with other components in Nepomuk can be seen in Figure 3.

6.2.1 Evaluation

The Evaluation of the Recommendation of Files and the Metadata Enrichment
(see Section 6.3) has been performed using two peers with different, partially
overlapping datasets.
The datasets used for the evaluation contain information about scientific publi-
cations: they contain metadata such as title, authors, publication place, publi-
cation date, keywords, etc. as available in DBLP11, Citeseer12 and other public
available websites.
From an original pool of 600 publications from 1997 to 2007, three datasets
were created, each of them containing metadata of 300 publications and cor-
responding to a different virtual user: Claudia, Dirk and Peter. The sets are
overlapping to a certain extent, Claudia and Dirk have 149, Claudia and Peter
have 84, and Dirk and Peter have 146 records in common. The publications
where extracted mainly from the areas of cognitive informatics, interactive
systems, software engineering, simulation and modeling, programming lan-
guages, computer graphics, information retrieval, network security, and com-
putational biology. Each metadata description is identified with a different URI
in each different virtual user’s space.
For each different user, the publications were randomly selected from the pool
of 600 available publications and were fixed for each of the users, thus repre-
senting an hypothetical desktop content. This yields three datasets with some
overlap and with different naming schema. The fact that one metadata record
corresponds to the same publication as another metadata record can only be
seen by analyzing the local part of the identifier of each metadata record.
These three different datasets were stored as different Nepomuk peers: Clau-
dia’s, Dirk’s and Peter’s. The client requesting the recommendations was run
from one of the peers, and the others were accessed through the messaging
functionality between peers available in Nepomuk. We consider to be Clau-
dia the user asking for recommendations, so, always resources from Claudia
are chosen for asking the system to recommend her with other files or addi-
tional metadata. Most of the previous works use text similarity functions as
one evidence of the matching. It is shown in [23] that a Soft TFxIDF simi-
larity function based on the Jaro-Winkler text similarity measure is the most
appropriate for this type of matching.
The system-oriented experiments performed in order to evaluate the recom-
mendation of files or resources used these three sets. The input to the system
11 http://www.informatik.uni-trier.de/~ley/db/ 12 http://citeseer.ist.psu.edu/

Deliverable D5.2 Version 1.0 26

http://www.informatik.uni-trier.de/~ley/db/
http://citeseer.ist.psu.edu/

NEPOMUK 17.12.2007

are 16 identifiers (URIs) of different metadata records (a record is a set of
triples describing the same resource). Each of this metadata record describes
a different file in the dataset of Claudia. The 16 metadata records have the
peculiarity that (i) a recommendation for the publication can be found in the
ACM Digital Library (DL) 13, (ii) there exists at least a description of a pub-
lication in one of the three different user sets among the first 20 results of
the “Find similar Articles” functionality provided by ACM DL. We looked into
this first 20 results of (ii) and picked up all descriptions of publications (not
equal to the one selected for giving similar articles) that are in at least one
of the three user sets. For each of the 16 files selected from Claudia we
stored this results, so, we knew which recommendations our system could
give based on the recommendations the ACM DL gives for this selected file
(see section 2.2 for details about the scenario). Then the system was asked
to give File recommendations for these 16 selected publications. For each
requested recommendation we consider: the recommendation found by our
system to be the number of retrieved results; the expected maximum number
of recommendations considering the top 20 ACM recommendation for each
selected file to be the number of relevant results14; the recommendations
that our system found among the top 20 ACM recommendations to be the
intersection between relevant and retrieved results. Using these definitions,
we computed the average effectiveness values for the 13 requests for which
our system provided recommendations obtaining an average precision of 0.33
and an average recall of 0.5. This result shows that the developed system is
able to find many of the relevant results available, but also that we need to
improve the ranking in order to put at the top of the recommendations the
most relevant results.
Additionally, we performed also a user-oriented evaluation for the recommen-
dation of similar files. For this we took 10 files from Claudia and asked the
system to compute recommendations. We analyzed the files for which the
system found recommendations in two different ways:

1. analyzing the metadata available for each of this publications, and

2. analyzing the abstracts of the corresponding publications.

The scenario we have in mind is that the reader has read the original paper
and wants to be recommended with additional interesting papers.
The judgment of 1) is pretty simple, here co-occurring strings in the values
of metadata attributes yield an increase in the overlap measure between the
metadata descriptions. The judgment was binary, it is relevant according to
the analysis of the authors, publication title, conference, keywords, or any of
the other metadata fields available, or it is not relevant. Here the result are
100 % correct.
The evaluation of 2) is more subjective, since the content of the abstracts has
to be analyzed in order to state the relevance of the recommended publica-
tions to the selected one. Here we performed a three level judgment: not
relevant at all, relevant, very relevant. The results obtained in these experi-
ments are presented in Table 1.
For the 10 Files, 41 recommendations were given by the system in total.
As it can be seen from Table 1, 49 % of the recommendations were very
relevant publications, 18 % resulted in recommendations not related at all
with the query, and the rest 33 % resulted in publications related to the
selected one. These results gives us a recommendation rate of 82 % of
relevant recommendations which we consider to be a good result.
13 http://portal.acm.org/dl.cfm 14 Limiting the possible relevant results only at the top
20 ACM recommendations makes the precision and recall values low because in this way we
consider only the highly relevant documents

Deliverable D5.2 Version 1.0 27

http://portal.acm.org/dl.cfm

NEPOMUK 17.12.2007

Not Relevant Relevant Very Relevant

User 1 9 12 20

User 2 6 15 20

Average 18 % 33 % 49 %

Table 1: File Recommendation Evaluation

6.3 Metadata Enrichment

This section presents the details of the recommendation of additional meta-
data for annotating one resource as presented in the scenario in Section 2.2.
Imagine a user having partially annotated some resources and wanting to find
additional metadata for this resources (e.g. missing authors, information re-
lated to publication place or date, etc.). The user poses a query to peers in
his community and gets additional metadata entries to the ones that already
exist for this resources. After the results have been presented, the user can
select the entries of interest and add them to the metadata for each of this
resources.
The steps for fulfilling this task are the same as the ones presented in Sec-
tion 6.2, but the selection and computation algorithms are different. For a
definition of the notation used, please refer to the definitions stated in Sec-
tion 6.2. The overlap is again used for finding the most similar resources,
but metadata descriptions having more entries than the query are favored be-
cause the goal is to add more entries to an existing metadata description. In
this recommendation, the computation of the overlap, pvs is preceded by a
metadata recommendation similarity expression which punishes query results
which do not contain more information than the query. It is expressed as:

simMDReco(pi,m(D1),m(D2)) :=

min(
∣∣V D1

pi

∣∣ , ∣∣V D2
pi

∣∣)∣∣∣V D1
pi

∣∣∣ · pvs(pi,m(D1),m(D2)) (5)

So, the overlap for the scenario aiming to enhance metadata descriptions is
computed as presented in Equations 6 and 7 .

overlape(m(D1),m(D2)) :=∑
p∈m(D2)

discrP2(p) · simMDReco(p, m(D1),m(D2))

|p ∈ m(D1) ∪ p ∈ m(D2)|
(6)

overlap_percentagee(m(D1),m(D2)) :=∑
p∈m(D2)

discrP2(p) · simMDReco(p, m(D1),m(D2))

|p ∈ m(D1)|
(7)

The remaining steps stay the same as already described in Section 6.2.

6.3.1 Evaluation

The setting of the peers and datasets for the evaluation of the Metadata En-
richment recommendation is the same as the one presented in Section 6.2.1.

Deliverable D5.2 Version 1.0 28

NEPOMUK 17.12.2007

Starting again from the three different sets for our users, each of the records
in each of the user sets went through a deletion phase. In this deletion phase,
20% of the existing property-value pairs were randomly deleted. So, after this
process we obtained three different sets, with some overlap in the publications
described by the metadata, and with some differences due to the randomly
applied deletion. For this evaluation, a set of 30 URIs from Mary’s set were
selected. Each of this URIs represents a metadata record that also exists in
Peter’s or in Dirk’s (or in both) sets. Mary requested recommendations for
metadata enhancement with these 30 selected URIs, and we computed the
precision and recall of the obtained results. Then, the original set of Mary
went through a deletion phase where 30% of the property-value pairs were
randomly deleted and the same request for recommendations was performed
again and precision and recall computed. This was performed iteratively, with
deletions in Mary’s set of 40%, 50%, and 60% in order to see when the
deletion rate is too high in order to get good recommendations back. We per-
formed this test several times, starting from the same fixed set of publications
for each user, but with newly computed random deletions and computed the
average values of precision and recall for the different deletion rates. It has
to be mentioned that the system is not only finding matching resources so
that its metadata description can be reused, but is also recommending only
metadata descriptions that provide at least one more property-value pair to
the metadata record that was selected for recommendations. This is, if the
found description would not add any information to the selected one, then it
is not sent back as a recommendation. The details of how the precision and
recall vary depending on how much information was deleted in each of the
different runs can be seen in figures 8(a) and 8(b).
From this detail we also computed the average values, which are presented in
figure 9
The reader will notice that the precision and recall of our approach demi-
nishes depending on the deletion rate of property-value pairs in the metadata
records. This is the expected behavior since when more data is deleted, less
information is available for finding resources.
In addition, we performed a second evaluation for the Recommendations for
Enhancing Metadata Descriptions by selecting other 15 publications from Mary.
As a result the system recommended entries corresponding to 16 different
metadata records. A screenshot of the selection of one publication can be
seen in Figure 10 and its corresponding metadata recommendation can be
seen in Figure 11. It can be noticed that the entries that are already present
in the selected publication’s metadata are not recommended, only entries with
new values are recommended.
The results obtained show that out of the 16 obtained recommendations,
11 recommendations are accurate and correspond to the same originating
publication, which means that they are correctly suggested and that the rec-
ommended metadata is metadata missing in the selected metadata record.
From the remaining 5 not accurate recommendations obtained there is some
evidence of matching, like same authors, same conference and dates, key-
words, etc., but they describe different publications and should in general not
be recommended. However, we noticed that in general, having overlap scores
of 0.7 or above yield correct results. This will be considered for the future
development of the recommendation techniques.
The overview of this second evaluation results are presented in Table 2.

6.4 Recommendation of Persons

The model proposed in this section builds on the well-known vector space
model, and represents expert candidates as vectors in the same space to-

Deliverable D5.2 Version 1.0 29

NEPOMUK 17.12.2007

(a) Precision

(b) Recall

Figure 8: Metadata Enhancement Evaluation: Precision and Recall values for
each run

Number of Reco. % of the provided Reco.

Accurate Reco. 11 73 %

Not Accurate Reco. 5 27 %

Table 2: Metadata Enrichment Recommendation Evaluation

gether with documents and queries, allowing us to retrieve relevant docu-
ments and experts with a single query. This allows us to re-use many tech-
niques developed for information retrieval to improve expert search. The basic
model is simple and easy to extend, e.g. using not only documents as expert
evidence, but also prior knowledge of the user, personal opinion, time, geo-
graphical distance, or salary.

6.4.1 Expert Search: Problem Definition

We assume a collection of documents D = d1, . . . , dm and a list of expert
candidates C = c1, . . . , cn. Additionally, we have a set of topics, extracted from
the collection of documents or predefined, T = t1, . . . , tl which will represent

Deliverable D5.2 Version 1.0 30

NEPOMUK 17.12.2007

Figure 9: Metadata Enhancement Evaluation: Average values of Precision
and Recall

Figure 10: Screenshot of Metadata Enrichment Recommendation - File selec-
tion

the dimensions of the space, and a query q of the type “Find the experts on
the topic X”. The task is then to retrieve a list of candidates from C ranked by
degree of expertise on q.

6.4.2 Formal Definition of the Basic Model

The model builds a multi-dimensional vector space S with inner product. We
define on S a basis representing l expertise topics, T = ~t1, . . . , ~tl.
We further represent a set of m documents di ∈ D, with 1 ≤ i ≤ m as
linear combination of the basis vectors, as usually done in the standard IR
vector space model. We then have ~di = d1,i~t1 + . . . + dl,i~tl, where the dk,is
are coefficients measuring how a topic vector ~tk belongs to the document di.
These coefficients can be based on TF×IDF, if we represent the topic basis
vectors ~tk by terms.
Our model differs from the standard IR vector space model by also represent-
ing the candidates cj ∈ C, 1 ≤ j ≤ n as vectors in this space. In order to do

Figure 11: Screenshot of Metadata Enrichment Recommendation - Recom-
mendations provided

Deliverable D5.2 Version 1.0 31

NEPOMUK 17.12.2007

so, we define a function

f : D × C → R
(di, cj) 7→ ri,j

(8)

which, for each candidate cj ∈ C assigns a weight ri,j to each document di.
This weight is defined as representing how much candidate cj is an expert on
the subject addressed by document di. Another view is to see the document
di an evidence of the expertise of candidate cj. We can use information
extraction techniques to estimate the probability that a candidate j’s name
appears in a document i, and use this as the weight ri,j.
Given the set of documents-vectors D and the function f , we can find the
coordinates of a candidate cj in the vector space generated by the chosen
topic basis T :

~cj =
m∑

i=1

ri,j
~di =

m∑
i=1

(
ri,j

l∑
k=1

dk,i ~tk

)
=

l∑
k=1

(
m∑

i=1

dk,iri,j

)
~tk

or in matrix form
C = D ×R (9)

where

C = [~c1| . . . | ~cn] , D = [~d1| . . . | ~dm]
R = [ri,j] with 1 ≤ i ≤ m, 1 ≤ j ≤ n

and n is the number of candidates, m is the number of documents, ~di is the
vector of the ith document, ~cj is the vector of the jth candidate, and ri,j is
the relationship weight between the document i and the candidate j.
The query is represented as a vector containing the topics for which we need
appropriate experts or documents, i.e. ~q as ~q = q1~t1 + . . . + qn ~tn.
We use a distance measure in order to rank candidates and documents based
on increasing distance to the query vector. A default measure is the well
known cosine similarity sim(~q,~v) = ~q·~v

‖~q‖‖~v‖ where “·” denotes the dot-product
of the two vectors and ~v ∈ {di, cj}. We will discuss an alternative similar-
ity measure in section 6.4.4, and show that it performs better than cosine
similarity for the expert search task.
Now, that we have represented both candidates and documents in the same
vector space, we can retrieve both candidates and documents relevant to a
query, an advantage over pure document or expert search systems. We can
even query for documents most representative of the domain of expertise
of a candidate, using a candidate vector as query. It is useful, though, to
rank relevant candidates and documents in separate sets, to avoid having to
compare similarity of documents and candidates with a given query.

6.4.3 Extensions of the Model

Different types of refinement can be applied in order to include more evidences
of candidate expertise. We will discuss three types of extensions: document
dependent ones, candidate and topic dependent ones, and candidate depen-
dent extensions.
For the document dependent extensions, we add weights for each docu-
ment and use a diagonal matrix to add these these in our model: C =
D × (diag(~e) × R) where diag(~e) is a m × m diagonal matrix with the val-
ues ei. Each value ei represents the weight assigned to the document di.

Deliverable D5.2 Version 1.0 32

NEPOMUK 17.12.2007

This weight can, for example, represent time aspects, assigning for each doc-
ument a weight proportional to the creation date of the document, valuing
newer documents higher than old ones.
The second kind of refinement takes candidate and topic dependent aspects
into account, relating the weight to each candidate and to each (topic) dimen-
sion of the space. This can be used to model the fact that a person working
the first day on a topic is likely to be less expert on this topic than another
person having worked on it all her life.
To represent this kind of refinement we can compute C ′ = C ◦ W where
W is a matrix of the same dimension of C and ◦ indicates the Hadamard
product between matrices. Each element wj,k of W indicates the weight for
the dimension k of the candidate cj.
Last, we can refine the results using evidence weights depending only on the
candidate. We can for example use a cost function, to prefer older (more
experienced) experts, or to prefer experts with a lower salary [73].
This can be represented as a transformation C ′′ = C ′ × diag(~cf) where
diag(~cf) is a l × l diagonal matrix with values cfk, each value representing
the cost associated with the candidate cj.

6.4.4 Projection similarity

Long documents are usually not more relevant to a query than small ones.
For this reason, in document retrieval to avoid favouring long over small docu-
ments measures like cosine similarity are used which normalize for document
length. In expert retrieval, though, we do prefer to retrieve a person having
more expertise in the topic expressed by the query. We will therefore define
a measure we call projection similarity, which models the amount of expertise
in the query topic by an orthogonal projection of the candidate vector onto
the query vector, defined as follows: projSim(~q, ~cj) = cosθ ‖~cj‖ = ~q·~cj

‖~q‖ where
“·”, again, denotes the dot-product of the two vectors. Projection similarity
favours long vectors over shorter ones, as we multiply the length of the vector
~cj with the cosine of the angle between ~cj and ~q. So the longer the candidate
vector the higher the similarity score.

6.4.5 Vector Space Dimensions (T)

Different ways of representing topics of expertise are possible. The following
paragraphs illustrate three different ways to build and select the reference
topics used as basis of the vector space.
The classical way of building a vector space basis given a set of documents isTerms(TFxIDF)
to extract terms present in the document collection after eliminating the stop
words and applying a stemming algorithm. The coordinates of a document
are then the TF×IDF values related to the corresponding term basis. Using
this approach each candidate is represented as a vector containing a value
for each term in the document collection representing her expertise on the
topic represented by that term. We will use this approach as baseline for our
experiments.
Another relevant technique is to use latent semantic analysis [31] or latentTerms & LSA
semantic indexing (LSI), which aims at solving the problem of synonymy and
polysemy. LSI is able to manipulate and significantly compress the dimensions
for document collections and can improve performance compared to TF×IDF
without dimension reduction by 30% in the case of document retrieval [35].
As last alternative we investigated the use of lexical compounds for keywordLexical compounds
extraction. As [6] has shown we can extract from a set of documents a list of

Deliverable D5.2 Version 1.0 33

NEPOMUK 17.12.2007

“themes”, as key concepts of that set. For example “business process model”
is thus recognized as a topic and can be used to represent candidate expertise
on that topic. [21, 6] have presented very good results for this technique for
query expansion tasks.
In our context we use this method to extract the key expertises of a candidate
from the set of documents related to her, and use this key expertises to place
the expert in the vector space as described earlier.

6.4.6 Evaluation

This section discusses our experiments investigating 1) the benefit of projec-
tion similarity for retrieving candidates introduced in section 6.4.4, and 2)
the benefit of various information retrieval optimizations for the vector space
model to improve expert search.
We will focus on document dependent extensions as appropriate relevance
assessments. Data are still missing for candidate and topic dependent exten-
sions.
The Enterprise Search Track (TRECent) [25] started in TREC 2005 as a pilotThe TRECent Collection
track and in 2006 took place with a complete set of relevance assessments.
In TRECent 2006, participants used the W3C test collection [68], consisting of
a document collection with about 330,000 HTML pages— mailing list entries,
people home pages, CVS logs, W3C web pages, wiki pages—the relevance
assessments from the human evaluators, a list of topics, and a list of expert
candidates which contains the name and the e-mail address of persons to
be considered as potential experts for the topics. We used the 2006 topics
composed of title, description, and narrative parts, representing a query as
concatenation of these constituents.
We implemented an expert search system which incorporates the model de-Experimental Setup
fined above. As output, our system produces a run file in TRECent format that
allows us to use the official trec_eval utility program to compute the common
evaluation measures in order to compare the performance of our system with
results of other TRECent participants.
To compare performance for the different variants we tested, we ran the sys-
tem varying only one variable at a time, keeping the others fixed. As reference
run we use the run with the following properties: 1) use terms for indexing
2) use pruning method described below, considering only terms containing
letters 3) use projection similarity measure 4) use weights (1/1) represent-
ing the occurrence of the candidates in either author or text fields 5) do not
consider the PageRank values of the documents. All mean average precision
values presented below are followed by the p-value of the t-test between the
variant run and the reference run, noted between parentheses. We consider
a difference to be statistically significant when p ≤ 0.05.
In figure 12(a) we show all runs submitted to TRECent 2006 ordered by MAP,
as well as our system.
We compared three different indexing methods — term based, LSA based,Vector space dimensions

and pruning methods and lexical compounds based — to investigate different possibilities of defining
topics of expertise as described in section 6.4.5.
Furthermore, we tested different pruning schemes on the term basis. We
used all the terms occurring in the document and then pruned the space
dimensions considering only the first k bases ordered by document frequency
where k is the rank where we reach 80% of the total document frequency in
the document collection. We also tried to remove noise from the collection
considering only terms consisting of letters.
Performing the experiments on the term based indexing of the collection, we
see that performance is maximized when we consider both digits and letters

Deliverable D5.2 Version 1.0 34

NEPOMUK 17.12.2007

(a)

(b)

(c)

Figure 12: (a) Retrieval effectiveness (MAP values) of the 2006 participant at
TRECent (b) Precision/Recall curves varying the vector similarity function (c)
Precision/Recall curves using PageRank weights for the documents

Deliverable D5.2 Version 1.0 35

NEPOMUK 17.12.2007

and when we do not prune the basis considering only the most frequent terms
(see table 3). As expected from document retrieval, removing terms decreases
retrieval effectiveness while increasing indexing efficiency. In the reference
run we used the smallest basis to save time.

Pruned Not Pruned

Only Letters 0.3370 0.3854 (p =0.0091)

All Chars 0.3716 (p =0.0112) 0.4024 (p =0.0035)

Table 3: Retrieval effectiveness (MAP and p-value) varying the pruning tech-
niques

Our experiments show that using lexical compounds as topics of expertise is
not significantly better than using all terms in the documents (see table 4).
We also see that applying LSA on the term space kills the effectiveness of our
system. One reason for this is that we performed LSA on the already pruned
version because of resource limitations. We also tried to prune the lexical
compounds basis in the same way we pruned the term basis and we observed
that, contrary to the term space, performance does not significantly change
(p =0.8353) considering only the top k basis ordered by document frequency.

Dimension Term LSA LexComp LexComp Pruned

MAP (p-value) 0.3370 0.0894 (p =0.0) 0.3586 (p =0.5927) 0.3625 (p =0.5374)

Table 4: Retrieval effectiveness (MAP and p-value) using different vector space
dimensions

To compute the relationship matrix R (see section 6.4.2) we used a versionRelationship weights
of the collection which contains tags representing occurrences of candidate
names and e-mails from [75].
To associate documents with candidates, we set the relationship weight to
one when a candidate name, email or username as defined in [75] appears
in a document. We intend to investigate further refinements of this scheme
in the future. Table 5 shows how effectively we can identify the candidates in
this tagged collection, where %cand is the percentage of candidates identified
in the collection, %rel_cand is the percentage of identified candidates which
are relevant, #avg is the average number of documents associated (that is,
ri,j > 0) with a candidate, and %docs is the percentage of document di with
at least one relationship ri,j > 0.
In these experiments we used different weights to represent the occurrence
of a candidate’s name or address in the author field. For these experiments
we only consider the emails; this is sound as using only the mailing list part
of the W3C collection on the 2006 queries performance was not significantly
different. We observed that when not considering candidate occurrences in
the text (i.e. text weight is zero) effectiveness decreases. Including text occur-
rences with 10% of the weight of an author occurence still yields performance
lower than the reference run (which used 1/1 weights for author/text). Other
combinations of author/text occurrence weights did not significantly change

collection %cand %rel_cand #avg %docs

2006 71.38% 97.89% 1246 40.89%

Table 5: Candidates extraction effectiveness

Deliverable D5.2 Version 1.0 36

NEPOMUK 17.12.2007

effectiveness compared to the reference run (see table 6). These results im-
ply that candidate occurrences in the text are also very important and can not
be ignored.

Author/Text weights 1/0 1/0.1 1/0.25 1/0.5 1/0.75 1/0.1

MAP 0.2246 0.3149 0.3306 0.3378 0.3365 0.3370

p-value 0.0 0.0183 0.1559 0.6803 0.5528

Table 6: Retrieval effectiveness (MAP and p-value) using different text weights

To experiment with and evaluate the document dependent extensions dis-Document dependent
extensions cussed in section 6.4.3 we used the PageRank values of the documents. These

values are computed using the link structure of the HTML document collection
15. We note that though PageRank has been shown not to work very well in
the enterprise scenario the collection we use is based on a public web crawl
so PageRank should be suited to identify authoritative documents.
We experimented with the use of a document dependent feature in order to
refine the candidates position in the vector space. The MAP values show that
using the PageRank values of the documents as weights for the candidate
placement slightly improves performance, see table 7. The difference at high
precision values is very small, though, see figure 12(c).

with PageRank weights without PageRank weights

0.3435 (p =0.0515) 0.3370

Table 7: Retrieval effectiveness (MAP and p-value) using PageRank weights
for the documents

We investigated the performances of two different similarity measures com-Similarity functions
paring query and retrievable vectors: cosine similarity and projection similarity
presented in section 6.4.4. Our hypothesis was that projection similarity can
improve expert retrieval effectiveness.
While it is possible to use cosine similarity, this does not take information
about the vector lengths into account. Using projection similarity retrieval ef-
fectiveness improves substantially: growing from a MAP of 0.2502 for cosine
similarity to 0.3370 for projection similarity, with a statistically significant differ-
ence (p =0.0020) Figure 12(b) also shows, that especially for high precision
values the improvement is substantial. These results confirm our intuition
described in section 6.4.4.

6.5 Recommendation of Tags

Recommending tags can serve various purposes, such as: increasing the
chances of getting a resource annotated, reminding a user what a resource
is about and consolidating the vocabulary across the users. We describe here
how the folksonomy structure of the Nepomuk network of peers can be used
to find suitable tag recommendations for resources the user wants to anno-
tate. We start by introducing social resource sharing systems, formalize the
underlying datastructure called folksonomy, and formulate the tag recommen-
dation problem. Then we introduce two algorithms to recommend tags to
users and describe our evaluation methodology. Finally, we present results of
the application of the proposed methods on three real-world datasets.16

15 http://apex.sjtu.edu.cn/apex_wiki/Shenghua_Bao/TREC_2006_PageRanks/ 16 The re-
sults presented here have been (partially) presented at the ECML/PKDD 2007 [47].

Deliverable D5.2 Version 1.0 37

http://apex.sjtu.edu.cn/apex_wiki/Shenghua_Bao/TREC_2006_PageRanks/

NEPOMUK 17.12.2007

6.5.1 A Formal Model for Folksonomies.

A folksonomy describes the users, resources, and tags, and the user-based
assignment of tags to resources. Formally, a folksonomy is a tuple F :=
(U, T,R, Y) where U , T , and R are finite sets, whose elements are called
users, tags and resources, resp., and Y is a ternary relation between them,
i. e., Y ⊆ U × T × R, whose elements are called tag assignments (tas for
short).
In this deliverable, we will use an equivalent view on the folksonomy structure.
We will consider it as a tripartite (undirected) hypergraph G = (V,E), where
V = U ∪̇T ∪̇R is the set of nodes, and E = {{u, t, r} | (u, t, r) ∈ Y } is the set
of hyperedges.
For convenience we also define, for all u ∈ U and r ∈ R, tags(()u, r) :=
{t ∈ T | (u, t, r) ∈ Y }, i. e., tags(()u, r) is the set of all tags that user u
has assigned to resource r. The set of all posts of the folksonomy is then
P := {(u, S, r) | u ∈ U, r ∈ R,S = tags(()u, r)}. Thus, each post consists of a
user, a resource and all tags that this user has assigned to that resource.
Users are typically described by their user ID, and tags may be arbitrary
strings. What is considered a resource depends on the type of system. In
web based systems like del.icio.us, the resources are typically URLs, in BibSon-
omy URLs or publication references, and in last.fm, the resources are artists.
On the social semantic desktop of Nepomuk resources annotated with tags
are identified by their URI and are of different type. They might include wiki
pages, PDF documents, emails, URLs, or local files.

6.5.2 Tag Recommender Systems

Recommender systems (RS) in general recommend interesting or personalized
information objects to users based on explicit or implicit ratings. Usually RS
predict ratings of objects or suggest a list of new objects that are relevant for
the user most. In tag recommender systems the recommendations are, for a
given user u ∈ U and a given resource r ∈ R, a set T̃ (u, r) ⊆ T of tags. In
many cases, T̃ (u, r) is computed by first generating a ranking on the set of
tags according to some quality or relevance criterion, from which then the top
n elements are selected.

6.5.3 Collaborative Filtering

Due to its simplicity and promising results, collaborative filtering (CF) has been
one of the most dominant methods used in recommender systems. In the
next section we recall the basic principles and then present the details of the
adaptation to folksonomies.
The idea is to suggest new objects or to predict the utility of a certain objectBasic CF principle
based on the opinion of like-minded users [64]. In CF, for m users and n
objects, the user profiles are represented in a user-object matrix X ∈ Rm×n.
The matrix can be decomposed into row vectors:

X := [~x1, . . . , ~xm]> with ~xu := [xu,1, . . . , xu,n], for u := 1, . . . ,m,

where xu,o indicates that user u rated object o by xu,o ∈ R. Each row vec-
tor ~xu corresponds thus to a user profile representing the object ratings of
a particular user. This decomposition leads to user-based CF. (The matrix
can alternatively be represented by its column vectors leading to item-based
recommendation algorithms.)
Now, one can compute, for a given user u, the recommendation as follows.

Deliverable D5.2 Version 1.0 38

NEPOMUK 17.12.2007

First, based on matrix X and for a given k, the set Nk
u of the k users that

are most similar to user u ∈ U are computed: Nk
u := arg maxk

v∈U sim(~xu, ~xv)
where the superscript in the arg max function indicates the number k of neigh-
bors to be returned, and sim is regarded (in our setting) as the cosine similarity
measure. Then, for a given n ∈ N, the top n recommendations consist of a
list of objects ranked by decreasing frequency of occurrence in the ratings of
the neighbors (see Eq. 10 below for the folksonomy case).
This brief discussion refers only to the user-based CF case, moreover, we
consider only the recommendation task since in collaborative tagging systems
there are usually no ratings and therefore no prediction. For a detailed de-
scription about the item-based CF algorithm see [33].
Because of the ternary relational nature of folksonomies, traditional CF can-CF for Tag

Recommendations in
Folksonomies

not be applied directly, unless we reduce the ternary relation Y to a lower
dimensional space. To this end we consider as matrix X alternatively the
two 2-dimensional projections πURY ∈ {0, 1}|U |×|R| with (πURY)u,r := 1 if
there exists t ∈ T s. t. (u, t, r) ∈ Y and 0 else and πUT Y ∈ {0, 1}|U |×|T |

with (πUT Y)u,t := 1 if there exists r ∈ R s. t. (u, t, r) ∈ Y and 0 else. The
projections preserve the user information, and lead to log-based like recom-
mender systems based on occurrence or non-occurrence of resources or tags,
resp., with the users. Notice that now we have two possible setups in which
the k-neighborhood Nk

u of a user u can be formed, by considering either the
resources or the tags as objects.
Having defined matrix X, and having decided whether to use πURY or πUT Y
for computing user neighborhoods, we have the required setup to apply col-
laborative filtering. For determining, for a given user u, a given resource r,
and some n ∈ N, the set T̃ (u, r) of n recommended tags, we compute first
Nk

u as described above, followed by:

T̃ (u, r) :=
n

arg max
t∈T

∑
v∈Nk

u

sim(~xu, ~xv)δ(v, t, r) (10)

where δ(v, t, r) := 1 if (v, t, r) ∈ Y and 0 else.

6.5.4 A Graph Based approach

The seminal PageRank algorithm [16] reflects the idea that a web page is
important if there are many pages linking to it, and if those pages are impor-
tant themselves.17 In [44], we employed the same underlying principle for
Google-like search and ranking in folksonomies. The key idea of our FolkRank
algorithm is that a resource which is tagged with important tags by important
users becomes important itself. The same holds, symmetrically, for tags and
users, thus we have a graph of vertices which are mutually reinforcing each
other by spreading their weights. In this section we briefly recall the princi-
ples of the FolkRank algorithm, and explain how we use it for generating tag
recommendations. More details can be found in [44].
Because of the different nature of folksonomies compared to the web graph
(undirected triadic hyperedges instead of directed binary edges), PageRank
cannot be applied directly on folksonomies. In order to employ a weight-spread-
ing ranking scheme on folksonomies, we will overcome this problem in two
steps. First, we transform the hypergraph into an undirected graph. Then
we apply a differential ranking approach that deals with the skewed structure
of the network and the undirectedness of folksonomies, and which allows for
topic-specific rankings.
First we convert the folksonomy F = (U, T, R, Y) into an undirected tri-partiteFolksonomy-Adapted

Pagerank graph GF = (V,E). The set V of nodes of the graph consists of the disjoint
17 This idea was extended in a similar fashion to bipartite subgraphs of the web in HITS [49] and
to n-ary directed graphs in [70].

Deliverable D5.2 Version 1.0 39

NEPOMUK 17.12.2007

union of the sets of tags, users and resources. All co-occurrences of tags and
users, users and resources, tags and resources become edges between the
respective nodes (more details in [44]).
The rank of the vertices of the graph are the entries in the fixed point ~w of
the weight spreading computation

~w ← dA~w + (1− d)~p , (11)

where ~w is a weight vector with one entry for each node, A is the row-stochas-
tic version of the adjacency matrix of the graph GF defined above, ~p is the
preference vector, and d ∈ [0, 1] is determining the influence of ~p.
For a global ranking, one will choose ~p = 1, i. e., the vector composed by 1’s.
In order to generate recommendations, however, ~p can be tuned by giving a
higher weight to the user and to the resource for which one currently wants
to generate a recommendation. The recommendation T̃ (u, r) is then the set
of the top n nodes in the ranking, restricted to tags. In the experiments
presented in Section 6.5.5, we will see that this version performs reasonable,
but not exceptional. This is in line with our observation in [44] which showed
that the topic-specific rankings are biased by the global graph structure. As a
consequence, we developed the following differential approach.
As the graph GF that we created in the previous step is undirected, we face theFolkRank—Topic-Specific

Ranking problem that an application of the original PageRank would result in weights
that flow in one direction of an edge and then ‘swash back’ along the same
edge in the next iteration, so that one would basically rank the nodes in the
folksonomy by their degree distribution. This makes it very difficult for other
nodes than those with high edge degree to become highly ranked, no matter
what the preference vector is.
This problem is solved by the differential approach in FolkRank, which com-
putes a topic-specific ranking of the elements in a folksonomy. Let ~w0 be the
fixed point from Equation (11) without preference vector and ~w1 be the fixed
point with preference vector ~p and in this case d = 0.7. Then ~w := ~w1 − ~w0

is the final weight vector. Thus, we compute the winners and losers of the
mutual reinforcement of nodes when a user/resource pair is given, compared
to the baseline without a preference vector. We call the resulting weight ~w[x]
of an element x of the folksonomy the FolkRank of x.18 For generating a
tag recommendation for a given user/resource pair, we compute the ranking
as described above, and then restrict the result set T̃ (u, r) to the top n tag
nodes.

6.5.5 Evaluation

In this section we first describe the datasets we used, how we prepared the
data, the methodology deployed to measure the performance, and which al-
gorithms we used, together with their specific settings.
To evaluate the proposed recommendation techniques we have chosen datasetsDatasets
from three different folksonomy systems: del.icio.us, Last.fm and BibSonomy.
They have different sizes, different resources to annotate and are probably
used by different people. Therefore they form a good basis to test our tag
recommendation scenario in a general setting. Table 8 gives an overview on
the datasets. For all datasets we disregarded if the tags had lower or upper
case since this is the behaviour of most systems when querying them for posts
tagged with a certain tag (although often they store the tags as entered by
the user).
18 In [44] we showed that ~w provides indeed valuable results on a large-scale real-world dataset
while ~w1 provides an unstructured mix of topic-relevant elements with elements having high edge
degree. In [45], we applied this approach for detecting trends over time in folksonomies.

Deliverable D5.2 Version 1.0 40

NEPOMUK 17.12.2007

Del.icio.us.: We used a dataset from del.icio.us19 we obtained from July 27
to 30, 2005 [44]. Since del.icio.us allows its users to not tag resources at
all (they can be accessed by the tag “system:unfiled”) we added those
posts with the tag “system:unfiled” to the dataset.

Last.fm.: The data was gathered during July 2006, partly through the web
services API (collecting user nicknames), partly crawling the Last.fm20

site. Here the resources are artist names, which are already normalized
by the system.

BibSonomy: For BibSonomy,21 we were able to create a complete snapshot
of all users, resources (both publication references and bookmarks) and
tags publicly available at April 30, 2007, 23:59:59 CEST. From the snap-
shot we excluded the posts from the DBLP computer science bibliogra-
phy22 since they are automatically inserted and all owned by one user
and all tagged with the same tag (dblp). Therefore they do not provide
meaningful information for the analysis.

dataset |U | |T | |R| |Y | |P | date kmax

del.icio.us 75,245 456,697 3,158,435 17,780,260 7,698,653 2005-07-30 77

Last.fm 3,746 10,848 5,197 299,520 100,101 2006-07-01 20

BibSonomy 1,037 28,648 86,563 341,183 96,972 2007-04-30 7

Table 8: Characteristics of the used datasets.

Many recommendation algorithms suffer from sparse data or the “long tail” ofCore computation
items which were used by only few users. Hence, to increase the chances of
good results for all algorithms (with exception of the most popular tags recom-
mender) we will restrict the evaluation to the “dense” part of the folksonomy,
for which we adapt the notion of a p-core [13] to tri-partite hypergraphs. The
p-core of level k has the property, that each user, tag and resource has/occurs
in at least k posts.
To construct the p-core, recall that a folksonomy (U, T,R, Y) can be formalized
equivalently as tri-partite hypergraph G = (V,E) with V = U ∪̇T ∪̇R. First we
define, for a subset Ṽ of V (with Ṽ = Ũ ∪̇T̃ ∪̇R̃ and Ũ ⊆ U, T̃ ⊆ T, R̃ ⊆ R),
the function

P (v, Ṽ) =

{(v, S, r) | r ∈ R̃, S = tags()Ṽ (v, r)}
if v ∈ Ũ

{(u, v, r) | u ∈ Ũ , r ∈ R̃}
if v ∈ T̃

{(u, S, v) | u ∈ Ũ , S = tags()Ṽ (u, v)}
if v ∈ R̃

(12)

which assigns to each v ∈ Ṽ the set of all posts in which v occurs. Here,
tags()Ṽ is defined as in Section 6.5.1, but restricted to the subgraph (Ṽ , E|Ṽ).
Let p(v, Ṽ) := |P (v, Ṽ)|. The p-core at level k ∈ N is then the subgraph of
(V,E) induced by Ṽ , where Ṽ is a maximal subset of V such that, for all
v ∈ Ṽ , p(v, Ṽ) ≥ k holds.
Since p(v, Ṽ) is, for all v, a monotone function in Ṽ , the p-core at any level
k is unique [13], and we can use the algorithm presented in [13] for its
computation. An overview on the p-cores we used for our datasets is given in
Table 9. For BibSonomy, we used k = 5 instead of 10 because of its smaller
size. The largest k for which a p-core exists is listed, for each dataset, in the
last column of Table 8.
19 http://del.icio.us 20 http://www.last.fm 21 http://www.bibsonomy.org
22 http://www.informatik.uni-trier.de/~ley/db/

Deliverable D5.2 Version 1.0 41

http://del.icio.us
http://www.last.fm
http://www.bibsonomy.org
http://www.informatik.uni-trier.de/~ley/db/

NEPOMUK 17.12.2007

dataset k |U | |T | |R| |Y | |P |

del.icio.us 10 37,399 22,170 74,874 7,487,319 3,055,436

Last.fm 10 2,917 2,045 1,853 219,702 75,565

BibSonomy 5 116 412 361 10,148 2,522

Table 9: Characteristics of the p-cores at level k.

To evaluate the recommenders we used a variant of the leave-one-out hold-outEvaluation methodology
estimation [43] which we call LeavePostOut. In all datasets, we picked, for
each user, one of his posts p randomly. The task of the different recom-
menders was then to predict the tags of this post, based on the folksonomy
F \ {p}.
As performance measures we use precision and recall which are standard in
such scenarios [43]. With r being the resource from the randomly picked post
of user u and T̃ (u, r) the set of recommended tags, recall and precision are
defined as

recall(T̃ (u, r)) =
1
|U |

∑
u∈U

| tags(()u, r) ∩ T̃ (u, r)|
| tags(()u, r)|

(13)

precision(T̃ (u, r)) =
1
|U |

∑
u∈U

| tags(()u, r) ∩ T̃ (u, r)|
|T̃ (u, r)|

. (14)

For each of the algorithms of our evaluation we will now describe briefly the
specific settings used to run them.

Most popular tags: For each tag we counted in how many posts it occurs and
used the top tags (ranked by occurence count) as recommendations.

Most popular tags by resource: For a given resource we counted for all tags
in how many posts they occur together with that resource. We then
used the tags that occured most often together with that resource as
recommendation.

Adapted PageRank: With the parameter d = 0.7 we stopped computation
after 10 iterations or when the distance between two consecutive weight
vectors was less than 10−6. In ~p, we gave higher weights to the user
and the resource from the post which was chosen. While each user, tag
and resource got a preference weight of 1, the user and resource from
that particular post got a preference weight of 1 + |U | and 1 + |R|, resp.

FolkRank: The same parameter and preference weights were used as in the
adapted PageRank.

Collaborative Filtering UT: Collaborative filtering algorithm where the neigh-
borhood is computed based on the user-tag matrix πUT Y . The only pa-
rameter to be tuned in the CF based algorithms is the number k of best
neighbors. For that, multiple runs where performed where k was suc-
cessively incremented until a point where no more improvements in the
results were observed. For this approach the best values for k were 80
for the deli.icio.us, 60 for the Last.fm, and 20 for the BibSonomy dataset.

Collaborative Filtering UR: Collaborative Filtering algorithm where the neigh-
borhood is computed based on the user-resource matrix πURY . For this
approach the best values for k were 100 for the deli.icio.us, 100 for the
Last.fm, and 30 for the BibSonomy dataset.

Deliverable D5.2 Version 1.0 42

NEPOMUK 17.12.2007

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10
R

ec
al

l
Number of recommended tags

FolkRank
Collaborative Filtering UT

most popular tags by resource
Collaborative Filtering UR

adapted PageRank
most popular tags

Figure 13: Recall for del.icio.us p-core at level 10

6.5.6 Results

In this section we present and describe the results of the evaluation. We will
see that all three datasets show the same overall behavior: ‘most popular
tags’ is outperformed by all other approaches; the CF-UT algorithm performs
slightly better than and the CF-UR approach approx. as good as the ‘most
popular tag by resource’, and FolkRank uniformly provides significantly better
results.
We will now study the results in detail. There are two types of diagrams. The
first type of diagram (Figure 13) shows in a straightforward manner how the
recall depends on the number of recommended tags. In the other diagrams
with usual precision-recall plots (Figures 14 and 15) a datapoint on a curve
stands for the number of tags used for recommendation (starting with the
highest ranked tag on the left of the curve and ending with ten tags on the
right). Hence, the steady decay of all curves in those plots means that the
more tags of the recommendation are regarded, the better the recall and the
worse the precision will be.
Figure 13 shows how the recall increases, when more tags of the recommen-Del.icio.us.
dation are used. All algorithms perform significantly better than the baseline
based on the most popular tags—whereas it is much harder to beat the re-
source specific most popular tags. The surprising result is that the graph
based recommendations of FolkRank have superior recall—independent of the
number of regarded tags. The second best results come from the collaborative
filtering approach based on user tag similiarities. For ten recommended tags it
reaches 89% of the recall of FolkRank (0.71 of 0.80)—a significant difference.
The idea to suggest the top most popular tags of the resource gives a recall
which is very similiar to using the CF recommender based on users resource
similiarities—both perform worse than the aforementioned approaches. Be-
tween most popular tags by resource and most popular tags is the adapted
PageRank which is influenced by the most popular tags, as discussed earlier.
The precision-recall plot in Figure 14 again reveals clearly the quality of the
recommendations given by FolkRank compared to the other approaches. The
top 10 tags given by FolkRank contained in average 80% of the tags the
users decided to attach to the selected resource. Nevertheless, the precision
is rather poor with values below 0.2. So why do we call this a good result
anyhow?
A post in del.icio.us contains only 2.45 tags in average. A precision of 100%
can therefore not be reached when recommending ten tags. However, from
a subjective point of view, the additional ‘wrong’ tags may even be consid-

Deliverable D5.2 Version 1.0 43

NEPOMUK 17.12.2007

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
P

re
ci

si
on

Recall

FolkRank
Collaborative Filtering UT

most popular tags by resource
Collaborative Filtering UR

adapted PageRank
most popular tags

Figure 14: Recall and Precision for del.icio.us p-core at level 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

FolkRank
Collaborative Filtering UT

most popular tags by resource
Collaborative Filtering UR

adapted PageRank
most popular tags

Figure 15: Recall and Precision for Last.fm p-core at level 10

ered as highly relevant, as the following example shows, where the user
tnash has tagged the page http://www.ariadne.ac.uk/issue43/chudnov/

with the tags semantic, web, and webdesign. Since that page discusses the
interaction of publication reference management systems in the web by the
OpenURL standard, the tags recommended by FolkRank (openurl, web, web-
design, libraries, search, semantic, metadata, social-software, sfx, seo) are
adequate and capture not only the user’s point of view that this is a webde-
sign related issue in the semantic web, but also provide him with more specific
tags like libraries or metadata which the users nevertheless did not use. The
CF based on user/tag similiarities recommends very similiar tags (openurl, li-
braries, social-software, sfx, metadata, me/toread, software, myndsi, work,
2read). The additional tags may thus animate users to use more tags and/or
tags from a different viewpoint for describing resources, and thus lead to con-
verging vocabularies.
The essential point in this example is, however, that FolkRank is able to pre-
dict—additionally to globally relevant tags—the exact tags of the user which
CF could not. This is due to the fact that FolkRank considers, via the hyper-
graph structure, also the vocabulary of the user himself, which CF by definition
doesn’t do.
For this dataset, recall and precision for FolkRank are considerably higher thanLast.fm.
for the del.icio.us dataset, see Table 15. Even when just two tags are recom-
mended, the recall is close to 60%. Though the precision of the user-resource

Deliverable D5.2 Version 1.0 44

http://www.ariadne.ac.uk/issue43/chudnov/

NEPOMUK 17.12.2007

Number of recommended tags 1 2 3 4 5 6 7 8 9 10

FolkRank 0.724 0.586 0.474 0.412 0.364 0.319 0.289 0.263 0.243 0.225

Collaborative Filtering UT 0.569 0.483 0.411 0.343 0.311 0.276 0.265 0.257 0.243 0.235

most popular tags by resource 0.534 0.440 0.382 0.350 0.311 0.288 0.267 0.250 0.241 0.234

Collaborative Filtering UR 0.509 0.478 0.408 0.341 0.311 0.285 0.267 0.252 0.241 0.234

Table 10: Precision for BibSonomy p-core at level 5

collaborative filtering approach is always slightly better than on the del.icio.us
dataset, the recall is only better until the 7th tag where it falls below the
recall reached on the del.icio.us dataset. Again, the graph based approach
outperforms all other methods (CF-UT reaches at most 76% of the recall of
FolkRank). An interesting observation can be made about the adapted PageR-
ank: its recall now is the second best after FolkRank for larger numbers of
recommended tags. This shows the overall importance of general terms in
this dataset—which have a high influence on the adapted PageRank (cf. Sec-
tion 6.5.4).
For the BibSonomy dataset the precision for FolkRank is similiar to the Last.fmBibSonomy.
dataset (see Table 10), but the recall (omitted here because of space restric-
tions) reaches only values comparable to the del.icio.us dataset. We will focus
here on a phenomenon which is unique for that dataset. With an increas-
ing number of suggested tags, the precision decrease is steeper for FolkRank
than for the collaborative filtering and the ‘most popular tags by resource’
algorithm such that the latter two approaches for ten suggested tags finally
overtake FolkRank. The reason is that the average number of tags in a post is
around 4 for this dataset and while FolkRank can always recommend the max-
imum number of tags, for the other approaches there are often not enough
tags available for recommendation. This is because in the p-core of order 5,
for each post, often tags from only four other posts can be used for recom-
mendation with these approaches. Consequently this behaviour is even more
noticeable in the p-core of order 3 (which is not shown here).

Deliverable D5.2 Version 1.0 45

NEPOMUK 17.12.2007

7 Conclusion

In this deliverable we have provided the main infrastructure for sharing and
recommending metadata, as part of WP5000’s main contributions to the So-
cial Semantic Desktop Nepomuk. We have investigated, implemented and
analyzed methods for sharing metadata in large as well as recommending it.
The Metadata Sharing component, provides the central infrastructure for shar-
ing structured data over a scalable P2P network. This component fosters
semantic interoperability through iterative query reformulations, enabled by
pairwise schema mappings which are imported in the system as part of the
structured data shared by users. Metadata in RDF format can be efficiently
searched through this component. However only simple atomic queries are
supported so far. Some future work can comprise:

• Investigating approaches for efficient conjunctive queries;

• Analyzing different indexing methods which enable efficient similarity
search.

With the Metadata Recommendation and the Expert Recommender compo-
nents, users of the Social Semantic Desktop now are supported in several
ways by the spread knowledge of their surrounding community. Several types
of recommendations are generated from the available metadata of the P2P
network of Nepomuk peers, and from the Desktop content, which can support
the user in different situations.
The Metadata Recommendation component provide the user with recommen-
dation of resources based on the shared metadata in the community. It also
provide recommendations of additional metadata for the user’s resources.
Future work might include:

• investigation on how to improve the effectiveness of the recommenda-
tion provided;

• extension of the approach using the metadata alignment services from
WP5000 and WP2000;

• usage of the semantic search in the community provided by GridVine.

The Expert Recommender component uses a formal model for expert search
adapting and extending the classical vector space model for documents. The
proposed vector space model for expert search is flexible and keeps all benefits
of the traditional model, allowing the expert search system designer to build
upon a variety of techniques developed for document retrieval to improve
expert search. Furthermore, we can query for both documents and expert
with the same query.
Future work might include:

• investigation on how to combine different expert evidences and which
of these combinations improve expert search effectiveness;

• exploration and experimentation of different possibilities to extract doc-
ument-candidate relationship weights to improve retrieval effectiveness;

• evaluation of the effectiveness of retrieving both persons and documents
together.

The Recommendation of Files and Metadata for enrichment uses a complex
overlap computations, based on some metadata statistics and on string com-
parison measures. In this deliverable we present a fully operative prototype
implementing the overlap computations integrated in the Nepomuk architec-
ture, and a first evaluation of its functionalities. The prototype recommends

Deliverable D5.2 Version 1.0 46

NEPOMUK 17.12.2007

Files and additional Metadata for enrichment of existing metadata records
based on the specification of a local file present in the users desktop.
Future work might include:

• the investigation of more advanced recommendation methods, by com-
bining different techniques or evidences for the recommendation pro-
cess;

• development of new approaches for ranking the obtained results by con-
sidering more closely the users information available.

By including tag recommendations in situations where a user wants to tag
a resource — like a wiki page, an e-mail, or a file — we push the usage of
a common vocabulary of keywords among peers and speed up the tagging
process. Instead of entering each tag by hand, the user just needs to choose
some tags from the suggestions computed by the recommender component.
Furthermore, a simplified tagging process helps to increase the chance of get-
ting a resource annotated. Similarly, tag recommendations can help the user
to refine or extend a search when navigating through wiki pages or emails.
Those examples show the benefits of an integration of the Metadata Rec-
ommendation component in the end-user applications of the Social Semantic
Desktop.
Future work might include:

• Investigating the behavior of the user and how it changes when recom-
mendations are used.

• Dealing with sparse data or huge networks of peers.

In the third deliverable of WP5000 the focus will be put on the integration
and evaluation of our components. Effort will be also put in the usage of a
common evaluation dataset, in testing the efficiency of the components, and
using advanced techniques in order to improve the effectiveness.

Deliverable D5.2 Version 1.0 47

NEPOMUK 17.12.2007

References

[1] K. Aberer. Efficient Search in Unbalanced, Randomized Peer-To-Peer
Search Trees. Technical Report IC/2002/79, Swiss Federal Institute of
Technology, Lausanne (EPFL), 2002. http://www.p-grid.org/Papers/
TR-IC-2002-79.pdf.

[2] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. van Pelt. GridVine:
Building Internet-Scale Semantic Overlay Networks. In International Se-
mantic Web Conference (ISWC), 2004.

[3] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing data-ori-
ented overlay networks. In International Conference on Very Large
Databases (VLDB), 2005.

[4] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon. Dis-
tributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic
Web. Journal of Artificial Intelligence Research, 25, 2006.

[5] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy dupli-
cates in data warehouses. Proceedings of the 28th International Confer-
ence on Very Large Databases (VLDB 2002), 2002.

[6] P. Anick and S. Tipirneni. The paraphrase search assistant: terminological
feedback for iterative information seeking. Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development
in information retrieval, pages 153–159, 1999.

[7] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. Miller, and J. My-
lopoulos. The Hyperion Project: From Data Integration to Data Coordina-
tion. SIGMOD Record, Special Issue on Peer-to-Peer Data Management,
32(3), 2003.

[8] L. Azzopardi, K. Balog, and M. de Rijke. Language modeling approaches
for enterprise tasks. The Fourteenth Text REtrieval Conference (TREC
2005).

[9] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding
in enterprise corpora. Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 43–50, 2006.

[10] K. Balog and M. de Rijke. Finding experts and their Details in e-mail
corpora. Proceedings of the 15th international conference on World Wide
Web, pages 1035–1036, 2006.

[11] K. Balog and M. de Rijke. Searching for people in the personal work
space. International Workshop on Intelligent Information Access (II-
IA-2006), 2006.

[12] K. Balog and M. de Rijke. Determining Expert Profiles (With an Applica-
tion to Expert Finding). Proceedings of IJCAI-2007, pages 2657–2662,
2007.

[13] V. Batagelj and M. Zaversnik. Generalized cores, 2002. cs.DS/0202039,
http://arxiv.org/abs/cs/0202039.

[14] D. Benz, K. Tso, and L. Schmidt-Thieme. Automatic bookmark classifica-
tion: A collaborative approach. In Proceedings of the Second Workshop
on Innovations in Web Infrastructure (IWI 2006), Edinburgh, Scotland,
2006.

Deliverable D5.2 Version 1.0 48

http://www.p-grid.org/Papers/TR-IC-2002-79.pdf
http://www.p-grid.org/Papers/TR-IC-2002-79.pdf
http://arxiv.org/abs/cs/0202039

NEPOMUK 17.12.2007

[15] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data Management for Peer-to-Peer Computing : A
Vision. In International Workshop on the Web and Databases (WebDB),
2002.

[16] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Computer Networks and ISDN Systems,
30(1-7):107–117, April 1998.

[17] C. Campbell, P. Maglio, A. Cozzi, and B. Dom. Expertise identification
using email communications. Proceedings of the 12th ACM Conference
on Information and Knowledge Management (CIKM’03), pages 528–531,
2003.

[18] V. Carvalho and W. Cohen. Learning to Extract Signature and Reply Lines
from Email. Proceedings of the Conference on Email and Anti-Spam,
2004.

[19] C. Cattuto, V. Loreto, and L. Pietronero. Collaborative tagging and semi-
otic dynamics, May 2006. http://arxiv.org/abs/cs/0605015.

[20] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient
fuzzy match for online data cleaning. Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data, pages 313–324,
2003.

[21] P. Chirita, C. Firan, and W. Nejdl. Summarizing Local Context to Per-
sonalize Global Web Search. Proceedings of the 15th ACM Conference
on Information and Knowledge Management (CIKM’06), pages 287–296,
2006.

[22] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string dis-
tance metrics for name-matching tasks. Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web (IIWeb-03), 2003.

[23] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string
distance metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.

[24] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string
distance metrics for name-matching tasks. In Proceedings of IJCAI-03
Workshop on Information Integration, pages 73–78, August 2003.

[25] N. Craswell and D. Hawking. Overview of the TREC-2004 Web Track. The
Thirteenth Text REtrieval Conference (TREC 2004).

[26] N. Craswell, D. Hawking, A. Vercoustre, and P. Wilkins. P@noptic Expert:
Searching for Experts not just for Documents. Ausweb, 2001.

[27] P. Cudré-Mauroux and K. Aberer. A Necessary Condition For Semantic
Interoperability in the Large. In Ontologies, DataBases, and Applications
of Semantics for Large Scale Information Systems (ODBASE), 2004.

[28] P. Cudré-Mauroux, K. Aberer, and A. Feher. Probabilistic Message Passing
in Peer Data Management Systems. In International Conference on Data
Engineering (ICDE), 2006.

[29] V. Darlagiannis, R. Schmidt, N. Bonvin, and V. Agneeswaran. Nepomuk
Deliverable D4.2 - advanced search and basic distributed storage, 2007.

[30] V. Darlagiannis, R. Schmidt, R. John, and E. Ioannou. Nepomuk Deliver-
able D4.1 - distributed search system - basic infrastructure, 2006.

[31] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

Deliverable D5.2 Version 1.0 49

NEPOMUK 17.12.2007

[32] G. Demartini, P. Haghani, R. Jäschke, A. Johnston, M. Kiesel, and R. Paiu.
Nepomuk Deliverable D5.1 - Community Support Software First Ver-
sion. http://nepomuk.semanticdesktop.org/xwiki/bin/Main1/D5-1,
2006.

[33] M. Deshpande and G. Karypis. Item-based top-n recommendation algo-
rithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.

[34] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and
A. Tomkins. Visualizing tags over time. In Proc. of the 15th Interna-
tional WWW Conference, Edinburgh, Scotland, 2006.

[35] S. Dumais. Improving the retrieval of information from external
sources. Behavior Research Methods, Instruments and Computers,
23(2):229–236, 1991.

[36] H. Fang and C. Zhai. Probabilistic Models for Expert Finding. Proceedings
of 29th European Conference on Information Retrieval (ECIR’07), pages
418–430, 2007.

[37] S. Ghita, W. Nejdl, and R. Paiu. Semantically Rich Recommendations in
Social Networks for Sharing, Exchanging and Ranking Semantic Context.
Proceedings of ISWC, Galway, Ireland, November, 2005.

[38] O. Grebner, E. Ong, U. Riss, R. Gudjonsdottir, and H. Edlund. Nepomuk
Deliverable D10.1 - SAP Scenario Report, 2006.

[39] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merging the re-
sults of approximate match operations. Proceedings of the 30th In-
ternational Conference on Very Large Databases (VLDB 2004), pages
636–647, 2004.

[40] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management
Infrastructure for Semantic Web Applications. In International World
Wide Web Conference (WWW), 2003.

[41] H. Halpin, V. Robu, and H. Shepard. The dynamics and semantics of
collaborative tagging. In Proceedings of the 1st Semantic Authoring and
Annotation Workshop (SAAW’06), 2006.

[42] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social Bookmarking Tools
(I): A General Review. D-Lib Magazine, 11(4), April 2005.

[43] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluat-
ing collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

[44] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval
in folksonomies: Search and ranking. In Y. Sure and J. Domingue, ed-
itors, The Semantic Web: Research and Applications, volume 4011 of
Lecture Notes in Computer Science, pages 411–426, Heidelberg, June
2006. Springer.

[45] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Trend detection in
folksonomies. In Y. S. Avrithis, Y. Kompatsiaris, S. Staab, and N. E.
O’Connor, editors, Proc. First International Conference on Semantics And
Digital Media Technology (SAMT), volume 4306 of LNCS, pages 56–70,
Heidelberg, Dec 2006. Springer.

[46] G. Jeh and J. Widom. SimRank: a measure of structural-context similar-
ity. Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543, 2002.

Deliverable D5.2 Version 1.0 50

http://nepomuk.semanticdesktop.org/xwiki/bin/Main1/D5-1

NEPOMUK 17.12.2007

[47] R. Jäschke, L. B. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme.
Tag recommendations in folksonomies. In J. N. Kok, J. Koronacki, R. L.
de Mántaras, S. Matwin, D. Mladenic, and A. Skowron, editors, Knowl-
edge Discovery in Databases: PKDD 2007, 11th European Conference
on Principles and Practice of Knowledge Discovery in Databases, volume
4702 of Lecture Notes in Computer Science, pages 506–514, Berlin, Hei-
delberg, 2007. Springer.

[48] D. Kalashnikov and S. Mehrotra. Domain-independent data cleaning via
analysis of entity-relationship graph. ACM Transactions on Database Sys-
tems (TODS), 31(2):716–767, 2006.

[49] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM, 46(5):604–632, 1999.

[50] G. Kokkinidis and V. Christophides. Semantic Query Routing and Process-
ing in P2P Database Systems: The ICS-FORTH SQPeer Middleware. In
EDBT Workshops, 2004.

[51] M. Kotelnikov, A. Polonsky, M. Kiesel, M. Völkel, H. Haller, M. Sogrin,
P. Lannerö, and B. Davis. Nepomuk Deliverable D1.1 - Interactive Seman-
tic Wikis. http://nepomuk.semanticdesktop.org/xwiki/bin/Main1/

D1-1, 2006.

[52] S. Lauriere, A. Solleiro, S. Trug, C. Bogdan, K. Groth, and P. Lannero.
Nepomuk Deliverable D11.1 - mandriva community case study - scenario
report, 2007.

[53] J. Li, H. Boley, V. C. Bhavsar, and J. Mei. Expert finding for eCollaboration
using FOAF with RuleML rules. Montreal Conference on eTechnologies
(MCTECH), 2006.

[54] E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Conjunctive Triple
Pattern Queries over Large Structured Overlay Networks. In International
Semantic Web Conference (ISWC), 2006.

[55] B. Lund, T. Hammond, M. Flack, and T. Hannay. Social Bookmarking
Tools (II): A Case Study - Connotea. D-Lib Magazine, 11(4), April 2005.

[56] C. Macdonald and I. Ounis. Voting for Candidates: Adapting Data Fusion
Techniques for an Expert Search Task. Proceedings of the 15th ACM Con-
ference on Information and Knowledge Management (CIKM’06), pages
387–396, 2006.

[57] C. Macdonald and I. Ounis. Using Relevance Feedback in Expert Search.
Proceedings of 29th European Conference on Information Retrieval
(ECIR’07), pages 431–443, 2007.

[58] A. Mathes. Folksonomies – Cooperative Classification and Commu-
nication Through Shared Metadata, December 2004. http://www.

adammathes.com/academic/computer-mediated-communication/

folksonomies.html.

[59] A. McLean, A. Vercoustre, and M. Wu. Enterprise PeopleFinder: Com-
bining Evidence from Web Pages and Corporate Data. Proceedings of
Australian Document Computing Symposium, 2003.

[60] A. McLean, M. Wu, and A. Vercoustre. Combining Structured Corporate
Data and Document Content to Improve Expertise Finding.

[61] W. Meng, C. Yu, and K. Liu. Building efficient and effective metasearch
engines. ACM Computing Surveys (CSUR), 34(1):48–89, 2002.

Deliverable D5.2 Version 1.0 51

http://nepomuk.semanticdesktop.org/xwiki/bin/Main1/D1-1
http://nepomuk.semanticdesktop.org/xwiki/bin/Main1/D1-1
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html

NEPOMUK 17.12.2007

[62] P. Mika. Ontologies Are Us: A Unified Model of Social Networks and
Semantics. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors,
ISWC 2005, volume 3729 of LNCS, pages 522–536, Berlin Heidelberg,
November 2005. Springer-Verlag.

[63] G. Mishne. Autotag: a collaborative approach to automated tag assign-
ment for weblog posts. In WWW ’06: Proceedings of the 15th interna-
tional conference on World Wide Web, pages 953–954, New York, NY,
USA, 2006. ACM Press.

[64] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collab-
orative filtering recommendation algorithms. In World Wide Web, pages
285–295, 2001.

[65] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme. Mining associa-
tion rules in folksonomies. In V. Batagelj, H.-H. Bock, A. Ferligoj, and
A. Žiberna, editors, Data Science and Classification: Proc. of the 10th
IFCS Conf., Studies in Classification, Data Analysis, and Knowledge Orga-
nization, pages 261–270, Berlin, Heidelberg, 2006. Springer.

[66] A. Seaborne. RDQL - A Query Language for RDF". W3C Member Submis-
sion, 2004. http://www.w3.org/Submission/RDQL/.

[67] A. P. Sheth and J. A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Comput-
ing Surveys, 22(3), 1990.

[68] W3C Text Collection, 2005. http://research.microsoft.com/users/nickcr/w3c-summary.html
(Last visit: September 2007).

[69] G. Wiederhold. Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3), 1992.

[70] W. Xi, B. Zhang, Y. Lu, Z. Chen, S. Yan, H. Zeng, W. Ma, and E. Fox. Link
fusion: A unified link analysis framework for multi-type interrelated data
objects. In Proc. 13th International World Wide Web Conference, New
York, 2004.

[71] Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the semantic web: Collabora-
tive tag suggestions. In Proceedings of the Collaborative Web Tagging
Workshop at the WWW 2006, Edinburgh, Scotland, 2006.

[72] J. Zhang, M. Ackerman, and L. Adamic. Expertise Networks in Online
Communities: Structure and Algorithms. Proceedings of the 16th inter-
national conference on World Wide Web, pages 221–230, 2007.

[73] Y. Zhang. Personal communication, 2006.

[74] A. V. Zhdanova, L. J. B. Nixon, M. Mochol, and J. G. Breslin, editors.
Proceedings of the 2nd International ISWC+ASWC Workshop on Finding
Experts on the Web with Semantics, Busan, Korea, November 12, 2007,
volume 290 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[75] J. Zhu. W3C corpus annotated with W3C people identity. http://ir.

nist.gov/w3c/contrib/W3Ctagged.html, September 2006.

[76] J. Zhu, A. Gonçalves, V. Uren, E. Motta, and R. Pacheco. Mining Web
Data for Competency Management. Web Intelligence ’05, pages 94–100,
2005.

Deliverable D5.2 Version 1.0 52

http://www.w3.org/Submission/RDQL/
http://ir.nist.gov/w3c/contrib/W3Ctagged.html
http://ir.nist.gov/w3c/contrib/W3Ctagged.html

NEPOMUK 17.12.2007

A Abbreviations

API Application Programming Interface

GAV Global As View

NOA NEPOMUK Annotation Ontology

NRL NEPOMUK Representation Language

OSGi Open Services Gateway Initiative

OWL Web Ontology Language

P2P Peer-to-Peer

URI Uniform Resource Identifier

URL Uniform Resource Locator

VSM Vector Space Model

WSDL Web Service Description Language

XML Extensible Markup Language

Deliverable D5.2 Version 1.0 53

NEPOMUK 17.12.2007

B ST5210 — Specification of Exchange Formats & Workflows for
Metadata Sharing and Recommen-
dations

Table of Contents

1. Overview

2. Specifications

(a) Peers

(b) Communities of Peers

(c) Profiles of Peers and Communities

(d) Resources

3. Resources and Workflows

(a) Resources and Structures

(b) Required Workflows

4. Literature

Overview

Current social networking research is mostly analyzing the interactions be-
tween users and the communities they generate. Although this is a necessary
step in building social software, it is just its beginning. In order to interact and
find relevant material in a community, there must be a concrete mechanism for
metadata exchange between users, possibly subject to several access models.
More, these shared metadata should also incorporate the PC desktop context
under each it was created (e.g. a file was saved from an email attachment).
ST5210 will specify a syntactical framework for metadata sharing and user
profile definition. It will investigate the resources, data structures, and espe-
cially user workflows (series of actions users make in order to determinate
the context of their resource exchange) suitable for metadata based descrip-
tion. Once these items have been identified, sharing formats will be defined,
i.e., which metadata should be included when exchanging information. To
summarize, the current document will be a specification of:

1. Resources and workflows suitable to be semantically annotated

2. Metadata exchange formats for socially exchanging the above mentioned
items

3. User profile definition for metadata based recommender tools

Specifications

Peers

Definition In WP5000, a “peer” is a generic term associated to a person. A
“peer” in this sense is characterized by a unique URI, a name, has a certain
number of resources and a profile. In the context of WP5000, a peer:

1. Can exchange resources and metadata with other peers

Deliverable D5.2 Version 1.0 54

NEPOMUK 17.12.2007

2. May have assigned trust values to the other peers with whom he ex-
changes information

3. May use the trust values to bias the ranking computation such that re-
sources coming from highly trusted peers are also highly ranked

4. Can be member of one or more communities and share his resources
with the other members

Communities of Peers

Definition In the context of WP5000 communities represent groups of peers,
sharing some common characteristics (e.g., same topic of interest). Commu-
nities can be manually defined (e.g., FOAF, in which people manually specify
their friends) – based on static information, or can be automatically inferred
based on the information flow identified among peers.

Architecture The communities of peers we specify/identify are not isolated
and independent from each other (Fig. 1). Same peers may be members
of several communities and thus creating virtual links among communities.
Additionally peers communicate not only with the other peers, members of
the same community, but also with members from neighboring communities
(Fig. 2).

Fig. 1. Interaction among communities of peers

Deliverable D5.2 Version 1.0 55

NEPOMUK 17.12.2007

Fig. 2. Interactions among communities – detailed view

Profiles of Peers and Communities

Profiles of peers will be stored in FOAF/RDF format [FOAF, FOAF specifica-
tion]. There are five broad categories in which the FOAF terms are grouped.
However, for our purposes, of special importance are the foaf:interest and
foaf:knows properties, as they allow to describe on one hand the user’s com-
petencies and interests, and on the other hand his social network. For com-
munity detection to work, it is necessary that each peer makes at least his
foaf:interest information public. Basic information, which will be present in
every peer profile, refers to:

1. peer’s URI

2. foaf:interest – describing the peer’s research interest

3. foaf:mbox – representing the peer’s personal mailbox

4. foaf:homepage – describing the peer’s home page

Additional and optional information specified in the peer profile will include:

1. foaf:surname – the surname of the peer

2. foaf:givenname – the first name of the peer

3. foaf:nick – nick name of the peer

4. foaf:title – Mr., Mrs., Ms., Dr., etc

5. foaf:img – peer’s photo

6. foaf:knows – a person known by the peer

7. foaf:currentProject – a project this peer is currently working on

8. foaf:workplaceHomepage – the homepage of the organization the peer
works for

Deliverable D5.2 Version 1.0 56

NEPOMUK 17.12.2007

9. foaf:publications – link to the publications of this peer

Profiles are defined manually by the user and may be extended automati-
cally. We have developed in T4100 a technique for extracting the profile of
the ontology of a peer, i.e. a compact representation of his knowledge [1].
For knowledge stored in a folksonomy system (“community peer”), we are
currently working on extraction methods. The results will be presented in
deliverables D5.1-3.
These profiles either manually specified or (semi)automatically inferred from
the peers’ interactions, will be stored locally at each peer. There are some
reasons for storing them on the peers themselves: up-to-date information,
peers can decide who sees what, etc. However, the basic information specified
in the profile has to be available to everybody. Peers can only decide which of
the additional/optional properties are publicly available.
The profiles will be exchanged between peers via the P2P network with the
mechanisms provided for exchanging RDF data, and/or stored on a community
peer, where they are the basis for the community detection and analysis.
Here is an example of a specification of a peer profile:

<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<foaf:Project rdf:about="http://nepomuk.semanticdesktop.org/">

<foaf:homepage rdf:resource="http://nepomuk.semanticdesktop.org/"/>

</foaf:Project>

<foaf:Person rdf:about="http://www.kde.cs.uni-kassel.de/jaeschke">

<foaf:workInfoHomepage

rdf:resource="http://www.kde.cs.uni-kassel.de/jaeschke"/>

<foaf:img>

<foaf:Image rdf:about="http://www.kde.cs.uni-kassel.de/jaeschke/me.jpg"/>

</foaf:img>

<foaf:phone rdf:resource="tel:+495618046253"/>

<foaf:knows>

<foaf:Person rdf:about="http://www.bundestag.de/mdb/bio/M/miersja0.html">

<foaf:homepage

rdf:resource="http://www.bundestag.de/mdb/bio/M/miersja0.html"/>

<foaf:name>Jakob Mierscheid</foaf:name>

<foaf:mbox rdf:resource="mailto:wollner@spdfrak.de"/>

<rdfs:seeAlso

rdf:resource="http://www.bundestag.de/mdb/bio/M/miersja0.html"/>

</foaf:Person>

</foaf:knows>

<foaf:title>Mr</foaf:title>

<foaf:interest>

<foaf:Document rdf:about="http://www.semanticweb.org/">

<foaf:topic>Ontology</foaf:topic>

<foaf:topic>Semantic Web</foaf:topic>

<foaf:topic>Internet</foaf:topic>

</foaf:Document>

</foaf:interest>

<foaf:name>Robert Jaeschke</foaf:name>

<foaf:nick>Oberon</foaf:nick>

<foaf:publications>

<foaf:Document

rdf:about="http://www.bibsonomy.org/publ/search/J%C3%A4schke+user%3Ajaeschke"/>

</foaf:publications>

<foaf:givenname>Robert</foaf:givenname>

<foaf:surname>Jaeschke</foaf:surname>

<foaf:workplaceHomepage rdf:resource="http://www.kde.cs.uni-kassel.de/"/>

<foaf:currentProject rdf:resource="http://nepomuk.semanticdesktop.org/"/>

Deliverable D5.2 Version 1.0 57

NEPOMUK 17.12.2007

<foaf:mbox rdf:resource="mailto:jaeschke@kde.cs.uni-kassel.de"/>

</foaf:Person>

</rdf:RDF>

Specification of the profiles of the communities relies mainly on two cate-
gories: Projects and Groups, which allow us to talk about groups and group
membership among others. Groups are represented with the aid of the
foaf:Group class, which represents a collection of individual agents. The
foaf:member property allows us to explicitly express the membership of
agents to a group. Since the foaf:Person class is a subclass of the foaf:Agent
class, persons can also be members of a group. The profile of a community
has to be publicly available.
Here is an example of a definition of a community of peers:

<rdf:RDF

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<foaf:Document rdf:about="http://www.semanticweb.org/">

<foaf:topic>Internet</foaf:topic>

<foaf:topic>Ontology</foaf:topic>

<foaf:topic>Semantic Web</foaf:topic>

</foaf:Document>

<foaf:Group rdf:about="http://nepomuk.semanticdesktop.org/foaf/com/Nepomuk">

<foaf:name>Nepomuk</foaf:name>

<foaf:interest rdf:resource="http://www.semanticweb.org/"/>

<foaf:member rdf:resource="http://lsirpeople.epfl.ch/hauswirth/"/>

<foaf:member

rdf:resource="http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2076"/>

<foaf:member rdf:resource="http://www.l3s.de/~paiu/"/>

<foaf:member rdf:resource="http://www.kde.cs.uni-kassel.de/jaeschke"/>

</foaf:Group>

</rdf:RDF>

Resources

Definition We define as a “resource” any information item that can be found
on the users’ desktop. This basically means that both desktop objects and their
associated contextual information generated by the corresponding extractors
and adapters are denoted as “resources”.
This following list represents the desktop objects types for which Beagle++
has filters/extractors:

1. Office Documents

(a) OpenOffice.org (http://www.openoffice.org/) (sxw, sxc, sxi and more)

(b) OpenDocument (odt, ods, odp)

(c) Microsoft Office (doc, xls, ppt)

(d) AbiWord (http://www.abisource.com) (abw)

(e) Rich Text Format (rtf)

(f) PDF

2. Text Documents

(a) HTML (xhtml, html, htm)

(b) Source code (C, C++, C#, Fortran, Java, JavaScript, Lisp, Matlab,
Pascal, Perl, PHP, Python, Ruby, Scilab and Shell scripts)

Deliverable D5.2 Version 1.0 58

NEPOMUK 17.12.2007

(c) Plain text (txt, any plain text file that isn’t filed under any other
category)

3. Documentation/Help Documents

(a) Texinfo

(b) Man pages

(c) Docbook

(d) Monodoc

(e) Windows help files (chm)

4. Images (jpeg, png, bmp, tiff, gif)

(a) F-Spot (http://f-spot.org/Main_Page) and Digikam (http://www.
digikam.org/) tags in the images are also indexed

5. Audio (mp3, ogg, flac)

6. Video (mpeg, asf, wmv, mng, mp4, quicktime and other formats sup-
ported by mplayer)

7. Application launchers

8. Linux packages (ebuild, rpm)

9. Generic XSLT files

10. RDF/RDFS, XML

11. Bibtex files

Desktop documents having one of the above mentioned MIME types are index-
able and searchable within Beagle++. The list is easily extendable, since for
adding new MIME types to be indexed and searched by Beagle++ one needs
to create a corresponding extractor/adapter and register it to the currently
available list of filters.

Metadata Creation and Storage As described above, each workspace has
a number of extractors/adapters that receive desktop objects and generate
contextual information (in RDF/XML format) describing these objects. The
generated contextual information is stored in an RDF Store.
Example
Suppose you create a new file in your workspace named “books.bib”, and you
place the following content:
File: books.bib

@book{DBLP:books/aw/AbiteboulHV95,

author = {Serge Abiteboul and Richard Hull and Victor Vianu},

title = {Foundations of Databases}

}

The extractor or adapter responsible for parsing “bib” files will be alerted and
after processing the file, it will generate the appropriate contextual information
(RDF/XML) describing the file. The corresponding RDF/XML created by the
Beagle++ extractor for the “books.bib” file looks as follows:
Contextual information describing file “books.bib”

Deliverable D5.2 Version 1.0 59

http://f-spot.org/Main_Page
http://www.digikam.org/
http://www.digikam.org/

NEPOMUK 17.12.2007

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:j.0="http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.1="http://www.kbs.uni-hannover.de/beagle++/ontology/domain_l3s#">

<rdf:Description rdf:about="file:/home/ioannou/books.bib#AbiteboulHV95">
<rdf:type rdf:resource="http://www.kbs.uni-hannover.de/beagle++/ontology/domain_l3s#Publication"/>
<j.0:desktop_document_author rdf:resource="file:/home/ioannou/books.bib#Abiteboul_"/>
<j.0:desktop_document_author rdf:resource="file:/home/ioannou/books.bib#Hull_"/>
<j.0:desktop_document_author rdf:resource="file:/home/ioannou/books.bib#Vianu_"/>
<j.0:file_stored_from>books.bib</j.0:file_stored_from>
<j.0:text_title>Foundations of Databases</j.0:text_title>

</rdf:Description>
<rdf:Description rdf:about="file:/home/ioannou/books.bib#Abiteboul_">

<rdf:type rdf:resource="http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#Person"/>
<j.0:person_name>Serge Abiteboul</j.0:person_name>

</rdf:Description>
<rdf:Description rdf:about="file:/home/ioannou/books.bib#Vianu_">

<rdf:type rdf:resource="http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#Person"/>
<j.0:person_name>Victor Vianu</j.0:person_name>

</rdf:Description>
<rdf:Description rdf:about="file:/home/ioannou/books.bib#Hull_">

<rdf:type rdf:resource="http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#Person"/>
<j.0:person_name>Richard Hull</j.0:person_name>

</rdf:Description>
</rdf:RDF>

Finally, the generated information will be added to the RDF Store. Its impor-
tant to note that each resource is uniquely identified using a unique URI. In
our example this URI is “file:/home/ioannou/books.bib#AbiteboulHV95”.
The N-Triples found in the RDF Store corresponding to file “books.bib”

<file:/home/ioannou/books.bib#AbiteboulHV95>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.kbs.uni-hannover.de/beagle++/ontology/domain_l3s#Publication>

<file:/home/ioannou/books.bib#AbiteboulHV95>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#desktop_document_author>

<file:/home/ioannou/books.bib#Abiteboul_

<file:/home/ioannou/books.bib#AbiteboulHV95>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#desktop_document_author>

<file:/home/ioannou/books.bib#Hull_>

<file:/home/ioannou/books.bib#AbiteboulHV95>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#desktop_document_author>

<file:/home/ioannou/books.bib#Vianu_>

<file:/home/ioannou/books.bib#AbiteboulHV95>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#file_stored_from>

"books.bib"

<file:/home/ioannou/books.bib#AbiteboulHV95>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#text_title>

"Foundations of Databases"

<file:/home/ioannou/books.bib#Abiteboul_>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#Person>

<file:/home/ioannou/books.bib#Abiteboul_>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#person_name>

"Serge Abiteboul"

<file:/home/ioannou/books.bib#Vianu_>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#Person>

<file:/home/ioannou/books.bib#Vianu_>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#person_name>

"Victor Vianu"

<file:/home/ioannou/books.bib#Hull_>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#Person>

<file:/home/ioannou/books.bib#Hull_>

<http://www.kbs.uni-hannover.de/beagle++/ontology/desktop#person_name>

"Richard Hull"

Deliverable D5.2 Version 1.0 60

NEPOMUK 17.12.2007

Resources and Workflows

Resources and Structures

For a description of the resources and structures that we annotate please refer
to: https://www.l3s.de/web/upload/documents/1/pimo-report.pdf.

Required Workflows

Required workflows can be seen in PIMO description available at: https:

//www.l3s.de/web/upload/documents/1/pimo-report.pdf.

Literature

[1] Christoph Schmitz, Andreas Hotho, Robert Jaeschke, Gerd Stumme: Con-
tent Aggregation on Knowledge Bases using Graph Clustering. In Proceedings
of the 3rd European Semantic Web Conference, Budva, Montenegro, 2006.
[2] FOAF. http://www.foaf-project.org
[3] FOAF specification. http://xmlns.com/foaf/0.1/

Deliverable D5.2 Version 1.0 61

https://www.l3s.de/web/upload/documents/1/pimo-report.pdf
https://www.l3s.de/web/upload/documents/1/pimo-report.pdf
https://www.l3s.de/web/upload/documents/1/pimo-report.pdf
http://www.foaf-project.org
http://xmlns.com/foaf/0.1/

	Introduction
	Requirements and Objectives
	Metadata Sharing
	Metadata Recommendation

	State of the Art
	Metadata Management and Sharing
	Metadata(-based) Recommendation
	Recommendation of People
	Recommendation of Tags

	Metadata Sharing and Recommendation Architecture
	Metadata Sharing
	Service Description
	Architecture of Metadata Sharing

	Metadata Recommendation Architecture
	Service Description
	Relations to other components

	Metadata Sharing
	Overview
	GridVine: A Three-Tier Semantic Overlay Network
	Organizing Peers and Load-Balancing the Index at the Overlay Layer
	Sharing Information at the Semantic Mediation Layer

	Integrating Data at the Semantic Mediation Layer
	Resolving Queries in GridVine
	Self-Organizing Mappings
	Connectivity at the Mediation Layer
	Creation & Deprecation of Mappings
	Performance Evaluation

	Metadata Recommendation
	Overview
	Metadata based Recommendation of Files
	Evaluation

	Metadata Enrichment
	Evaluation

	Recommendation of Persons
	Expert Search: Problem Definition
	Formal Definition of the Basic Model
	Extensions of the Model
	Projection similarity
	Vector Space Dimensions (T)
	Evaluation

	Recommendation of Tags
	A Formal Model for Folksonomies.
	Tag Recommender Systems
	Collaborative Filtering
	A Graph Based approach
	Evaluation
	Results

	Conclusion
	Abbreviations
	ST5210 --- Specification of Exchange Formats & Workflows for Metadata Sharing and Recommendations

